
115Bl* LOGIC RESET
AND ISC CORE CLEAR

ISC

COMPLETE
OPERATIONAL

Neil GJacobson

UNPROGRAMMED

POWER
UP

AW NON-TEST INSTRUCTION
ISC DONE SET AND

ANY NON-TEST INSTRUG
LOADED ' J

Digitized by the Internet Archive

in 2016

https://archive.org/details/insystemconfigurOOOOneil

THE IN-SYSTEM CONFIGURATION
HANDBOOK:

A Designer's Guide to ISC

THE IN-SYSTEM CONFIGURATION
HANDBOOK:

A Designer's Guide to ISC

Neil G. Jacobson

Xilinx, U.S.A.

KUJWER ACADEMIC PUBLISHERS
Boston / Dordrecht / New York / London

Distributors for North, Central and South America:

Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 0206 1 USA
Telephone (781) 871-6600

Fax (781) 871-6528

E-Mail <kluwer@wkap.com>

Distributors for all other countries:

Kluwer Academic Publishers Group

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS
Telephone 31 78 6576 000

Fax 31 78 6576 474

E-Mail <orderdept@wkap.nl>

Electronic Services <http://www.wkap.nl>

Library of Congress Cataloging-in-Publication

CIP info or:

Title: The In-System Configuration Handbook: A Designer’s Guide to ISC
Author (s): Neil G. Jacobson

ISBN: 1 -4020-7655-X

Copyright © 2004 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system or transmitted in any form or by any means, electronic, mechanical, photo-copying,

microfilming, recording, or otherwise, without the prior written permission of the publisher,

with the exception of any material supplied specifically for the purpose of being entered and

executed on a computer system, for exclusive use by the purchaser of the work.

Permissions for books published in the USA: permissions@wkap . Com
Permissions for books published in Europe: permissions@wkap.nl

Printed on acid-free paper.

Printed in the United States of America

Dedication

To Dina and Joseph whom I love

Table of Contents

DEDICATION V

PREFACE XV

ACKNOWLEDGMENTS XVII

CHAPTER 1: A BRIEF HISTORY OF IN-SYSTEM
CONFIGURATION 1

1. BACKGROUND 1

2. PROPRIETARY APPROACHES 1

21.1 Lattice Semiconductor and In-System Programming 3

The In-System Configuration Handbook

5

vm

3. STANDARD APPROACHES

3.1 IEEE STD 1149.1 5

CHAPTER 2: CONFIGURABLE DEVICE ARCHITECTURES 14

1. INTRODUCTION 14

2. PROGRAMMABLE LOGIC ARCHITECTURES 14

2.1 Simple & Complex Programmable Logic Devices 15

2.1.1 Altera CPLD Architectures 19

2.1.2 Lattice Semiconductor CPLD Architectures 20

2. 1 .3 Xilinx CPLD Architectures 22

2.2

Field Programmable Gate Arrays 23

2.2. 1 Xilinx FPGA Architectures 24

2.2.2 Actel FPGA Architectures 28

2.2.3 Altera FPGA Architectures 30

CHAPTER 3: IN-SYSTEM CONFIGURATION TECHNOLOGIES 32

1. INTRODUCTION 32

2. NONVOLATILE CONFIGURATION TECHNOLOGIES 33

2.1 Antifuse Cells 33

2.2 Electrically Erasable and Programmable Cells 35

2.3 Flash Erasable and Programmable Cells 37

2.4 Volatile Configuration Technologies 39

2.4.1 SRAM Cells 39

3. CONFIGURATION ACCESS PORTS 41

Table of Contents

3.1 Parallel Access

3.2 Serial access

CHAPTER 4: CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES - CONFIGURATION DATA
SPECIFICATION

1. INTRODUCTION

2. JEDEC STANDARD DATA TRANSFER FORMAT 49

2.1 Basic File Organization 50

2.1.1 The L Field 50

2.1.2 The C Field 51

2.1.3 The V Field 51

2. 1 .4 Other Fields 5

1

2.2 Using JEDEC Files 51

CHAPTER 5: CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES - CONFIGURATION ALGORITHM
WITH DATA SPECIFICATIONS 54

1. SERIAL VECTOR FORMAT 54

1.1 SVF File Structure 54

1.1.1 The SIR Command 54

1.1.2 The SDR Command 55

1.1.3 The RUNTEST Command 56
1.1.4 Other Commands 57

1.2 Using SVF Files 57

2 . STAPL- STANDARD
59

TEST AND PROGRAMMING LANGUAGE

IX

The In-System Configuration Handbook

2.1 Basic STAPL File Structure 59
2.2 STAPL File Example 61

2.3 Using STAPL Files 63

CHAPTER 6: CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES - SEPARATED CONFIGURATION
ALGORITHM AND DATA SPECIFICATIONS 66

1. JAVA API FOR BOUNDARY-SCAN 66

1.1 Java 66
1.2 Where did Java come from? 67

1 .3 Java and the World Wide Web 69

1.4 Java and In-System Configuration 69

1.5 Development of Java API for Boundary-Scan 70

1.6 Basic Java API for Boundary-Scan File Structure 71

1.6.1 The API Components 72

1.6. 1.1 The javaScanState Class v 72

1.6. 1.2 The javaScanBitlf Interface Class 73

1 .6. 1 .3 The javaScanHWIf Interface Class 74

1.6. 1.4 The javaScanOperations Class 75

1.6.2 Data Compression 77

1 .6.3 Java Native Interface Requirements 77

1.7 Java API for Boundary-Scan File Example 77

1.8 Using the Java API for Boundary-Scan 97

CHAPTER 7: CONFIGURATION SPECIFICATION AND
DESCRIPTION LANGUAGES - IEEE STANDARD 1532 100

1. IEEE STD 1532 BSDL 100

1.1 Basic IEEE STD 1532 BSDL File Structure 101

1.1.1 IEEE STD 1 1 49. 1 BSDL ATTRIBUTES 1 02

1.1.2 The ISC_Pin_Behavior Attribute 103

1.1.3 The ISC_F1xed_System_pins attribute 1 04

1.1.4 The ISC_Status Attribute 1 06

1.1.5 The ISC Blank Usercode Attribute 106

Table of Contents

1.1.6 The ISC_Security Attribute 107

1.1.7 Description of ISC Algorithms in the BSDL File 1 09

1.1.8 ISC_Flow 109

1.1.9 ISC_PROCEDURE 114

1.1.10 ISC_ACTION 115

1.1.11 The ISC_Illegal_Exit Attribute 116

1.1.12 The ISC_Design_Warning Attribute 116

1.2 IEEE STD 1532 BSDL FILE EXAMPLE 116

1.3 USING THE IEEE STD 1532 BSDL FILE 127

2.

COMPARATIVE EVALUATION OF APPROACHES 133

CHAPTER 8 : THE IEEE STD 1532 COMPLIANT DEVICE 138

1. INTRODUCTION 138

2. OPERATING STATES 138

3.

SYSTEM PINS 140

4.

ALGORITHMIC OPERATION 141

4.1 Algorithm Steps and State Transitions 141
4.2 Algorithm Optimizations 142
4.3 Proprietary Algorithm Support 144
4.4 Nullified Instructions 144
4.5 Interleaving Test and Configuration Instructions 1 44
4.6 Asynchronous Transitions to Test Logic Reset 145
4.7 Device Operation Status Indication

1 45
4.8 Device Operation Success Indication 146

5.

SUMMARY
147

The In-System Configuration Handbook

CHAPTER 9: DESIGN CONSIDERATIONS FOR IN-SYSTEM
CONFIGURABLE SYSTEMS 148

1. INTRODUCTION 148

2. DEVICE SELECTION CRITERIA 148

2.1 IEEE STD 1532 Compliance 149

2.1.1 IEEE STD 1532 Compliant vs. IEEE STD 1532 Compatible
149

2.2 Power consumption during configuration 150

2.3 Configuration Speed 151

2.4 Endurance 152

2.5 Data Retention 152

2.6 Security 153

2.7 Reliability 153

2.8 System Boot Time 153

2.9 Configuration Process Validation 154

3. SIGNAL LAYOUT CONSIDERATIONS 155

4. SYSTEM POWER CONSIDERATIONS 159

5. DEVICE AND SYSTEM TEST CONSIDERATIONS 160

6. SYSTEM CONFIGURABILITY CONSIDERATIONS 161

6.1 Prototyping Configuration 161

6.2 Production Configuration 162

6.3 Field Upgradeable 162

6.3.1 Field Upgradeable -Service Engineer 163

6.3.2 Field Upgradeable -Remote Control 163

Table of Contents

6.4 Bl-CONFIGURABLE

6.5 Functionally Reconfigurable

6.6 Medley reconfigurable

164

165

166

7. SUMMARY 166

CHAPTER 10: IN-SYSTEM CONFIGURATION-BASED
PLATFORMS l68

1. CONFIGURATION ENVIRONMENTS 168

1.1 Prototype 168

1.2 Manufacturing 169

1.3 Field 170

2. PLD MANUFACTURER TOOLS 170

2.1 PLD Manufacturer Specialty Tools 171

2.1.1 XlLINX XSVF 171

2.1.2 Lattice Semiconductor ispVM 172

2.2 PC-based Boundary-Scan Tools 173

3. AUTOMATIC BOARD TEST EQUIPMENT TOOLS 174

4.

FIELD APPLICATION TOOLS 176

4.1 Direct TAP Access Methods 177

4.2 Embedded In-System Configuration Processor Methods
177

CHAPTER 11: DESIGNING
APPLICATIONS

IN-SYSTEM CONFIGURABLE
180

The In-System Configuration Handbook

1. THE SPECTRUM OF CONFIGURABILITY 180

2. DESIGNING FOR SIMPLE CONFIGURABILITY 181

3. DESIGNING FOR FIELD RECONFIGURABILITY 185

3.1 Designing for Network Reconfigurability 186

4. DESIGNING FOR PERIODIC RECONFIGURABILITY 188

5. DESIGNING FOR FREQUENT RECONFIGURABILITY 188

6. DESIGNING FOR RUNTIME RECONFIGURABILITY 189

6.1 Designing for Rapid Reconfigurability 189

7. SUMMARY 193

CHAPTER 12: CONCLUSION 194

REFERENCES , 196

INDEX 199

Preface

Programmable logic radically changed the electronic system design

landscape. It reduced board space needed for random logic, state machines

and system interfaces. It allowed faster design cycles, made easy late term

bug fixes and gave designers greater freedom to experiment and prototype.

In-system programming of these devices has had a similar revolutionary

effect. The ability to change the programmed content of programmable

logic while it is on the board is equivalent to being able to redesign all the

hardware - without changing a single component.

This allows the possibility of providing field upgrades of your product to

fix problems or to introduce new functionality. It allows designing in

reconfiguration as an essential function of your system with different

capabilities swapped in as needed during run-time. Further it allows storage

of different product profiles for retrieval as necessary to allow just-in-time

configuration of systems to meet market needs.

Recent developments in programmable logic have helped in making
realizing recon figurable systems more streamlined. The most significant

development, though, was the introduction, approval and popularization of

IEEE STD 1532, the IEEE Standard for In-System Configuration of
Programmable Devices.

I he purpose of this text is to bring together, in a single volume, the

information needed by systems designers to develop applications that

include configurability. T his covers the entire range of systems from the

The In-System Configuration Handbook

simplest implementations that merely include configurable logic to realize

system functions to the most complicated that include reconfigurability as

part of the application itself.

While focusing on IEEE STD 1532, the text surveys all the available

techniques and products that ease developing in-system configurable

applications. In addition, we detail design considerations and rules-of-thumb

to ensure the functionality you want will work.

The book begins with a historical perspective on programmable logic.

Understanding where you have been often clarifies the present and sheds

light in the future. Then we will examine the architecture of programmable

logic devices, surveying the most popular devices. From that basis, we will

look into the programmable technology at the core of the devices and

understand how that works.

After understanding the hardware we are working with, we will survey

the infrastructure support provided with these devices. By this, we are

referring to the files used to provide programming data for the device. It is

here that we gain knowledge of IEEE STD 1 532.

From there we study the characteristics of IEEE STD 1532 devices and

then begin the analysis of in-system configurable application design. We
look into the types of tools available to help you in completing your system

and the applicable system design rules. We end with an exploration of the

many types of configurable systems and guidelines for their construction.

The object is for this book to be both useful and practical in nature and

serve as a reference for developing in-system configurable systems of the

present and the future.

Acknowledgments

I would like to thank my reviewers C. J. Clark, Dave Bonnett, Vince Eck,

Dennis Lia, Mark Moyer, Ken Parker, and Jesse Jenkins. Your exceptional

efforts and helpful feedback contributed substantially to this book.

Special thanks to the patient Carl Harris at Kluwer Academic Publishers,

who I am certain, never thought he would see this text completed.

1 would also like to thank my loving wife, Dina, and my son, Joseph for

allowing me to pursue this craziness during what would have otherwise been

"our time".

Chapter 1

A Brief History of In-System Configuration

1. Background

Programmable logic grew from the humble beginnings of Programmable

Logic Arrays (PLA) and through Programmed Array Logic (PAL), to

Programmable Logic Devices (PLD) and Field Programmable Gate Arrays

(FPGA).

Each step in the development increased the speed, flexibility, complexity

and capabilities of the devices. As well, the prices decreased. This typical

technological evolution led to increasing acceptance and use of the

programmable logic.

Worthy of emphasis, though, is that these devices are programmable.

They do nothing until programmed with the design personality the end user

needs. Early on, the primary purpose of programmability was to get the

device working. This wasn't surprising. Programming was complicated and

unreliable and typically carried out only once. Soon, the nature of the

programmable cell at the heart of these devices allowed for simpler

programming techniques. As well, easy reprogramming was possible.

Programming then simplified to the point in which the device itself was

responsible its own programming. There was no need for external special

purpose hardware. This, in turn, led to developing in-system configuration.

With in-system configuration, end users could begin to examine the utility of

reconfiguration of device contents as an essential part of the system. This is

the premise of this book.

2 . Proprietary Approaches

Some PLDs first incorporated in-system configuration because of the

process technology adopted. Manufacturers did not see this as a key selling

2 The In-System Configuration Handbook

point but a means to an end. Later, others developed it as a product

differentiator and used it as a key selling point.

Static read-only memory (SRAM) cell based devices were always in-

system configurable. Since the devices had a volatile data store, there

needed to be a method to get the configuration bits into the device. Since the

technology was new and no applicable standards existed, manufacturers

opted tor proprietary configuration ports. Typically, manufacturers provided

two methods. The first, a serial port, accepted data from a serial

programmable read-only memory (SPROM). The second was a parallel

port, typically used with a microprocessor or special control logic to load

configuration data 8 bits at a time.

Both approaches introduced their own protocols. SPROMs created a new
market segment to supply turnkey devices that incorporated the control

protocol with a PROM on a single chip. Publishing the protocol allowed end

users to fashion their own SPROMs, using some control logic (typically a

CPLD) and an off-the-shelf parallel PROM.

An inexpensive, simple microprocessor could use the parallel protocol to

do fast and intelligent loading of multiple SRAM devices. This would allow

users to manage and optimize the configuration method and configuration

store.

The serial protocol was simple and needed fewer device pins. This

supported designs with a larger configuration time budget and a greater need

for more input and output pins (IO), as well. Using a microprocessor as a

configuration controller driving the serial port is also possible.

It wasn't long before users connected the configuration port access and

the characteristic reprogrammability of the devices together to incorporate

reconfigurability into their designs.

For nonvolatile devices, the path was longer. Early nonvolatile

technologies needed special voltages to the device to program the contents.

The programming voltages were higher than the typical system voltages of 5

volts. Sometimes, the algorithm needed voltage pulsing with significant

pulse-width accuracy to program the device correctly. These special

requirements forced the use of special purpose machines known as device

programmers to get a device configured. This created a new application for

an industry that was already serving the ROM and PROM market. The

devices to be configured were inserted in a socket on the device

A BriefHistory ofIn-System Configuration 3

programmer. An operator would select the programming source file and

direct the machine to configure the device with the file's contents. The

development of special purpose device handling hardware and special gang

programmers increased throughput and fostered integration of this approach

into manufacturing flows. Device handlers could pick up a device, insert it

in a programmer, retrieve it after configuration, and then place it on the

target board for soldering. Gang programmers could program a large group

of similar devices with the same data concurrently to increase the

programming rate.

Every device had a different algorithm and different voltage needs.

Companies that developed device programmers struggled to keep up-to-date

with their end user needs.

2.1.1 Lattice Semiconductor and In-System Programming

Process technology advanced and the device geometries shrank. The
shrinking feature size allowed for two developments. First, the voltage

needed to program nonvolatile cells was reduced. Second, the available die

area increased for integration of programming control logic and the

generation of on-chip programming voltages. This made the developing in-

system configuration possible.

Lattice Semiconductor introduced what they called "In-System
Programming” in 1996. A simple four pin serial interface for configuration
conserved the number of IO pins needed. The four pins are:

• SDI (serial data input)

• MODE
• SCLK (serial clock)

• SDO (serial data output)

1 hese four pins supply programming data to the device and drive an
underlying controlling state machine that configures the device.

1 he SDI pin performs two different roles. First, it acts as the data input to
the serial shift register built inside the device. Second, it serves as one of two
control pins for the programming state machine. Because of this dual role,
the MODE pin controls the role of SDI. When MODE is low, SDI becomes
the serial input to the shift register. When MODE is high, SDI becomes a
control signal for the programming state machine.

4 The In-System Configuration Handbook

Figure 1-1. Lattice Semiconductor Programming State Machine

This means the MODE signal, combined with the SDI signal, controls

the programming state machine.

The SCLK pin provides the serial shift register with a clock. SCLK
clocks the internal serial shift registers and clock the programming state

machine between states.

The SDO pin connects to the output of the internal serial shift registers.

When MODE is high, SDO connects directly to SDI, bypassing the device's

shift registers.

The state machine consists of three states: Idle, Load and Execute. The

values of SDI and MODE at the rising edge of SCLK control the state

transitions. When powered, the device wakes in the idle state. To run a

configuration program, the device transitions to the load state to load the

instructions and data and then to the execute state to complete the operation.

The protocol allowed daisy chaining of Lattice devices and was

optimized for use with Lattice Semiconductor's programming algorithms.

While this approach provided great utility to users of these specific devices,

the protocol was proprietary and Lattice Semiconductor was not keen to

share it.

A BriefHistory ofIn-System Configuration 5

It turned out that was all right since another standard was starting to

come into use that was an obvious choice for in-system configuration.

3. Standard Approaches

In 1985, a group of European test engineers and technologists gathered to

discuss challenges and costs associated with board test. The complexity and

price of the automatic test equipment (ATE) because of shrinking packages

and falling voltages challenged manufacturers of sophisticated electronics.

This group began to discuss ways in which to amend the silicon to include

certain testability circuits to offload complexity from the ATE to the device.

This group became the Joint European Test Action Group or JETAG.

In 1988, the JETAG engaged engineers from North America in their

discussions. This lead to dropping the "E” and thus the Joint Test Action

Group or J FAG arrived. This group developed the early proposal for a

boundary-scan standard. The standardization was carried out with the

backing of the Institute of Electrical and Electronics Engineers (IEEE). In

1990, the IEEE formally approved and published the first boundary-scan

standard, known as IEEE STD 1 149.1.

3.1 IEEE STD 1149.1

Boundary-scan technology enables engineers to perform extensive

debugging and diagnostics on a system through four dedicated test pins.

Signals are scanned into and out of the IO cells of a device serially to control

its inputs and test the outputs under various conditions.

Devices that support IEEE STD 1149.1 contain a shift-register cell for

each signal pin of the device. These register cells are connected in a

dedicated path around the device’s boundary. 1 ogether these cells are known
as the boundary-scan register. T his register creates an access path that avoids
the normal inputs and provides direct control of the device and detailed
visibility at its outputs. Access to and manipulations of this register are
controlled by the four test pins and their associated control logic.

The four boundary-scan control signals, collectively referred to as the
Jest Access Port (TAP), define a serial protocol port for boundary-scan
based devices. The pins are as follows:

• ICK - (Test Clock) - synchronizes the internal state machine operations.

6 The In-System Configuration Handbook

• 1 MS - (Test Mode Select) - sampled at the rising edge of TCK to

determine the next state.

• TD1 - (Test Data Input) - sampled at the rising edge of TCK and shifted

into the device's test logic when the internal state machine is in the

correct state.

• TDO - (Test Data Output) - represents the data shifted out of the device's

test logic and is valid on the falling edge ofTCK when the internal state

machine is in the correct state.

The standard also allows an optional fifth pin called TRST (Test logic

Reset). When driven low, this signal asynchronously resets the internal state

machine. Because there exists a synchronous method to reset the state

machine using the other pins, most IEEE STD 1 149.1 devices do not include

TRST.

The TCK and TMS (and TRST) input pins drive a 16-state TAP
controller state machine. The TAP controller manages the exchange of data

and instructions. The controller advances to the next state based on the value

of the TMS signal at each rising edge of TCK.

A BriefHistory ofIn-System Configuration 7

Figure 1-2. TAP Controller State Machine

8 The In-System Configuration Handbook

The sixteen states of the TAP controller state machine are as follows:

• Test Logic Reset - You arrive at this state by holding TMS high for

five TCK pulses. This resets the logic of the TAP controller

• Run Test/Idle - Operations execute in this state after the associated

data has been loaded or simply to wait for signals to settle before

sampling them or capturing them.

• Select DR Scan — This transitional state leads to either data register

operations or instruction register operations.

• Capture DR - This state loads the selected data register with values

typically sampled from the device's pins or from some internal

device states. The active instruction defines the behavior.

• Shift DR - TDI sampling occurs in this state. In the state, the TAP
controller connects a data register between TDI and TDO of length

and type determined by the active instruction. With each rising edge

of TCK, data shifts into the register from TDI and shifted out on

TDO.
• Exitl DR - This transitional state leads to either the Pause DR or

Update DR state.

• Pause DR - This state allows the hardware controlling the TAP a

method to break shifts up into smaller bit chunks to ease the

processing burden. After completing the pause, the Shift state may
be reentered.

• Exit2 DR - This is a transitional state that leads either to the Shift

DR or Update DR state.

• Update DR - The state takes the data loaded in the shift register in

the Shift DR state and loads it into he active electronics of the

device.

• Select IR Scan - This transitional state leads to either instruction

register operations or the Test Logic Reset state.

• Capture IR - This state loads the instruction register with values

defined by the standard.

• Shift IR - TDI sampling occurs during this state. In the state, the

TAP controller connects the fixed length instruction register

between TDI and TDO. With each rising edge of TCK data shifts

into the register from TDI and shifted out on TDO.
• Exitl IR - This transitional state leads to either the Pause IR or

Update IR state

• Pause IR - This state allows the hardware controlling the TAP, a

method to break shifts up into smaller bit chunks to ease the

processing burden. After completing the pause, the Shift state may

be reentered.

A BriefHistory ofIn-System Configuration 9

• Exit2 IR - This is a transitional state that leads either to the Shift IR

or Update IR state

• Update IR - The state takes the instruction loaded in the shift

register in the Shift IR state and loads it to make it become the active

instruction.

Each device has only one instruction register. The instruction register

length is fixed. Every instruction must have a data register associated with it.

The two main paths in the state transition diagram are the DR path and the

IR path. The DR path controls the operations on the data registers. The IR

path control operations on the instruction register. The data register selected

through the DR path is based on the instruction loaded in the instruction

register after traversing the IR path.

10 The In-System Configuration Handbook

Figure 1-3. Block Diagram of an IEEE STD 1 149.1 Compliant Device

A transition path like the following loads a new value into the Instruction

Register:

1. Run Test/Idle

2. Select DR Scan

3. Select IR Scan

4. Capture IR

5. Shift IR (shift in instruction bits one at a time)

6. Exitl IR (last instruction bit shifted in)

7. Update IR (instruction shifted in now the active instruction)

A BriefHistory ofIn-System Configuration 11

8. Run Test/Idle

Now with an instruction loaded and active, you can load the data needed

by the instruction, into its associated data register. A transition path like the

following loads a new value into this data register:

1. RunTest/Idle

2. Select DR Scan

3. Capture DR
4. Shift DR (shift in data bits one at a time)

5. Exitl DR (last data bit shifted in)

6. Update DR (data shifted in now loaded into the device electronics)

7. RunTest/Idle

As the new value shifts into the currently selected Data Register on TDI,

the captured value shifts out on TDO.

The following data-registers are present in every IEEE STD 1149.1

compliant device:

• The Bypass register - A 1 bit pass-through register that connects the

TDI to the TDO with a 1 -clock delay to give access to another

device in the daisy chain on the same board.

• The Boundary Scan register (BSR) - this register intercepts all the

signals between the core-logic and the pins and drives the

interconnect tests.

IEEE STD 1 149.1 defines a compulsory set of instructions that must be

present in all compliant implementations. This compulsory set contains the

following instructions:

• BYPASS'. When active, this instruction connects the single bit

BYPASS register between TDI and TDO.
• EXTEST: When active, this instruction connects the boundary scan

register between the TDI and TDO. The device's pin states are

sampled and captured by the BSR cells in the Capture DR state. The
captured contents of the BSR shift out I DO as new values shift in

on TDI in the Shift DR state. The new BSR values are applied to the

chip's pins in the Update DR state

I he normal sequence used to perform a test operation is:

12 The In-System Configuration Handbook

1. Load an instruction that specifies the test performed (say,

EXTEST).

2. Load the Data Register with values used during this test.

3. Optionally, go to Run Test/Idle to wait for applied values to

settle.

4. Load the Data Register with the next values, while collecting the

results of the previous values applied.

5. Repeat from step 3 until all values are exhausted.

That represents a quick summary of the features of the boundary-scan

standard suitable for interconnect test. This was its primary and intended

application.

In 1993, improvements and corrections to the standard were approved.

Following that, 1994 saw the approval of a standard language for describing

the boundary-scan capacities of an IEEE STD 1149.1 compliant device.

This language, known as Boundary-Scan Description Language (BSDL), is

input to boundary-scan tools to allow them to understand the manner in

which to use a compliant device automatically.

By 1994, the complete boundary-scan infrastructure was available. A
well-defined hardware standard was approved and a well-defined boundary-

scan capability description language was available. This language was

Boundary-Scan Description Language (BSDL). We will learn more about

this later. Concurrent with this, device geometries were shrinking and speed

and area overhead associated with the test electronics of IEEE STD 1 149.1

were acceptable.

This set the stage for the broader adoption of IEEE STD 1149.1 as a

device test standard. The true power of the standard, however, was that it

defined an extensible architecture. Once the TAP was in place with its

associated state machine, there were no limits on defining instructions, data

registers, or functions supported.

As the adoption of IEEE STD 1149.1 increased, it made little sense to

have a separate proprietary port dedicated to in-system configuration and

one for boundary-scan test. Integration of the functionality became certain.

This was possible owing to the extensibility of the IEEE STD 1149.1

architecture. Vendors rushed to set up in-system configuration within IEEE

STD 1149.1. Each vendor worked alone and developed similar but rather

different approaches. Therefore, while the devices could be connected to

A BriefHistory ofIn-System Configuration 13

one another on an IEEE STD 1149.1 daisy chain, there were

incompatibilities.

Some devices did not fulfill all of IEEE STD 1 149.1, choosing to neglect

the boundary-scan test functionality. This left their devices as an

interconnect test hole on the board. Other manufacturers used the IEEE

STD 1149.1 state machine transitions in an unusual way during

programming. This needed special processing for those devices that could

harm other devices that had different schemes. Still other devices had

unusual or unspecified 10 behavior before and during configuration that

forced special handling.

The rush to IEEE STD 1149.1 was a hopeful first step. However, it did

not reduce the need for customized vendor-specific solutions.

Chapter 2

CONFIGURABLE DEVICE ARCHITECTURES

1. Introduction

Programmable logic is an ideal medium for customized digital designs.

Like microprocessors and memories, it offers the well-known advantages of

high integration: high complexity and density, small size, low power
consumption and cost, and high reliability. Programmable logic also avoids

all the problems associated with Application Specific Integrated Circuits

(ASIC):

• High Non-Recurring Engineering (NRE) costs (such as those charges

associated with mask fabrication)

• Inventory management costs

• Long delays in development and fabrication

• Complex testing issues

• Design issues related to deep sub-micron design rules

This might make programmable logic seem like the only reasonable

solution for almost any application. However, some disadvantages have yet

to be overcome. For instance, the high cost of high-density programmable

devices when compared to similar sized ASICs and the inability of

programmable logic to meet the speeds of ASICs. The programmable logic

community is rapidly addressing these disadvantages. Before we examine

the issues related to the mechanics of configuring programmable devices, let

us first get a better understanding of the variety of programmable devices on

the market.

2. Programmable Logic Architectures

As with most technologies, programmable logic has changed

significantly since its first introduction thirty years ago. Understanding this

Configurable Device Architectures 15

evolution helps shed light on today’s situation. In this section, we will

provide a survey the architectural evolution of programmable logic devices

(PLD) from Simple Programmable Logic Devices (SPLD) to Complex

Programmable Logic Devices (CPLD) to Field Programmable Gate Arrays

(FPGA).

Table 2-1. Gate Capacity for Device Categories

Programmable Device Category Equivalent Gate Range

SPLD Up to 500

CPLD Up to 50,000

FPGA Up to 5,000,000

ASIC Up to 50,000,000

Table 2-1 shows the application space of each evolutionary step. For

comparison purposes, Application Specific Integrated Circuits (ASIC) that

are semi-custom, mask-programmed devices are included. As
programmable logic densities have increased, ASIC densities have as well.

But the lower density range of the ASIC market has been quickly won over

by PLDs. ASICs have typically been relegated to very high density, very

high speed applications. With time, PLDs have been closing the density and

speed gap with ASICs.

2.1 Simple & Complex Programmable Logic Devices

Simple Programmable Logic Devices (SPLD), also known as

Programmable Array Logic (PAL), is now an insignificant, rapidly shrinking

part of the six billion dollar programmable logic market. It is, however, still

of interest to examine their architecture since it laid the groundwork for the

architecture of Complex Programmable Logic Devices (CPLD).

Typically, an SPLD consisted of a large switch network that allowed for

programmable connections between device inputs and wide input AND
gates. As pointed out in Figure 2-1, the inputs went into a product term
array that served the purpose of logically ANDing signals together. The
outputs of the product term array were then ORed together, creating an
AND-OR plane of logic. I he output of each large AND gate drove the data
input of a flip-flop. Other routing choices were available for each device
pin. for instance, some pins could be programmed as outputs and some pin
signals could be used a flip-flop clock signals.

16 The In-System Configuration Handbook

IN IN

AND
FLIP
FLOPOR

*

\

OR FLIP t

FLOP
AND

IN/OUT

>

>

)

>

IN/OUT

>

Figure 2-1. Block Diagram of a Typical SPLD

The most popular SPLD device was the 22V 10. The name stemmed

from the number of available pins on the device (22 being the total number

of user available pins on the device, 1 0 programmable IO and 1 2 inputs) and

the number of registers on the device (10). Many variations on this basic

device were made. The general architecture remained the same and the

number of IO pins and flip-flops varied.

SPLDs like their descendants, CPLDs, featured deterministic and fast

pad-to-pad timing. Most SPLDs, however, had only one clock signal

available in each device, one output enable and rather limited routing. For

these reasons, SPLD's use was limited to implementation of small state

machines, address decoders and to consolidate random glue logic.

As density and complexity demands increased, the SPLD architecture

was no longer applicable. The first variations on this architecture were

known as complex programmable logic devices (CPLD).

Configurable Device Architectures 17

In 2003, CPLDs made up about 35% of the programmable logic market.

These devices inherited the AND-OR structure from PALs, but offer more

inputs and outputs and better sharing of product terms and more clock

inputs.

CENTRAL SWITCH MATRIX

Figure 2-2. Block Diagram of a Typical CPLD

CPLDs have an architecture that results in deterministically calculable
speeds with fast pad-to-pad delays. Like the SPLD, there are centralized
routing resources. This typically takes the form of either a fully or partially
populated central switch matrix (CSM). Looking at Figure 2-2, you will see
that in many ways, a C PLD is similar to multiple SPLDs connected by the
CSM. Since all signals are routed through the CSM, the CPLD has
predictable timing.

18 The In-System Configuration Handbook

The CSM also allows connection of 10s to flip-flops in the CPLD or to

other IOs. Typically, each flip-flop has both set and reset inputs whose
controlling signal can be flexibly assigned. The implementation logic of the

CPLD is typically arranged in macrocells. Each macrocell consists of a

wide input programmable logic gate (typically a NAND gate with an

invertible output) and a flip-flop with set and reset controls. All paths

through the macrocell are programmable and invertible. Each macrocell can

therefore be a portion of a random logic function or a portion of a registered

state machine.

Typical CPLDs contain anywhere from about 30 to 500 registers. These

devices are typically used to realize wide input functions, state machines or

data interface logic that is not register intensive. CPLDs are typically

nonvolatile devices (meaning that they remember their configuration after

power is removed).

The three basic characteristics resulting from the CPLD architecture are

as follows:

• High speed

• Nonvolatile configuration

• Deterministic timing

These characteristics represent both the strength and weakness of

CPLDs. Their high speed allows them to perform as well as a custom or

semi-custom solution. The small board area they consume since they

integrate discrete functions and do not need a separate memory to store their

configuration helps reduce system cost. Finally, the deterministic timing

makes it easy to design them into systems and to predict system

performance. Unfortunately, these are strengths that designers view as

essential features and thus these device requirements work against increasing

CPLD densities using foreseeable process technologies. CPLDs often have

high static power consumption, caused by their wired-OR interconnect

structure with many sense amplifiers. The Lattice Semiconductor ispMACH

4000 and the Xilinx CoolRunner and CoolRunner2 families of CPLDs offer

ultra-low static power consumption.

Since the basic CPLD architecture cannot expand easily to large arrays,

CPLDs are inherently limited in size and offer few flip-flops. The limited

size (and therefore the limited logical complexity of designable applications)

aids in making CPLD design software simple and easy to use, providing

rapid design compilation times.

Configurable Device Architectures 19

2.1.1 Altera CPLD Architectures

The Altera Multiple Array Matrix (MAX) architecture is a typical CPLD
architecture. This architecture represents a hierarchical arrangement of

erasable Programmable Array Logic blocks using a two-dimensional array

structure. It is pictured in Figure 2-3. The design provides multiple level

logic, uses a programmable routing structure and is user reprogrammable

based on EEPROM technology.

oaQCK *-

LOOC/FFW
anx

LOGC/3FFW

BUK 4 oanx

oarrx *-

ICGC/WV
BLOCK

LOGCtfW
BOCK

FFOTOfWOJE H"
LOGCATAY
EOCK

LOOCATW
bock

OQOCK

Figure 2-3. Block Diagram of the Altera MAX Device

The MAX 5000 series and the second-generation MAX 7000 series
architectures consist of an array of large programmable blocks called Logic
Array Blocks (LABs). Each LAB in the MAX 7000 family comprises 16
macrocells. Each macrocell in turn has a programmable-AND/ fixed-OR
array and a configurable register. Ihus, each macrocell represents a small
PEL) with five programmable product terms, and it can be configured for
either sequential or combinatorial operation. Complex logic functions can be

20 The In-System Configuration Handbook

formed using multiple macrocells. In addition, the Altera LAB architecture

provides both sharable and parallel expander product terms (“expanders”)
that can be used to deliver more product terms directly to any macrocell in

the same LAB. finally, at the top level of the design hierarchy, signals are

routed between LABs by a Programmable Interconnect Array (PIA). This
global routing resource connects any signal source to any destination on the

chip.

The MAX 9000 family uses EEPROM nonvolatile programming, and a

logic hierarchy built from macrocells that are grouped into LABs as in the

MAX 7000 family. However, the routing architecture of the MAX 9000
family uses the FastTrack technology. There are 96 routing channels in each

row and 48 routing channels in each column.

2.1.2 Lattice Semiconductor CPLD Architectures

The Lattice Semiconductor MACH, pLSI and ispLSI families are

variations on the MAX theme.

The MACH family is a collection of PAL-like blocks arranged around a

central switch matrix for interconnect. A block diagram of the architecture

is supplied in Figure 2-4. The number of PAL blocks is increased to increase

the gate density.

Configurable Device Architectures 21

10

BLOCK
RALELOCK RALELOCK PAL BLOCK

IO

BLOCK

CBSfTRAL SAITOH MA7FIX

10

BLOCK
RALELOCK PALELOCK PALBLOCK

IO

ELOCK

Figure 2-4. Lattice Semiconductor MACH Device Block Diagram

The pLSI and ispLSI devices have a ring of Generic Logic Blocks

(basically PALs) around a switch matrix called a Global Routing Pool. As
with the MACH devices, all interconnects pass through the GRP yielding

predictable timing.

22 The In-System Configuration Handbook

GENERIC
LOGIC BLOCK

GENERIC
LOGIC BLOCK

GENERIC
LOGIC BLOCK

GLOBAL ROUTING POOL

GENERIC GENERIC GENERIC
LOGIC BLOCK LOGIC BLOCK LOGIC BLOCK

Figure 2-5. Lattice Semiconductor pLSI and ispLSI Device Block Diagram

2.1.3 Xilinx CPLD Architectures

The Xilinx 9500 family of CPLDs (including the 9500, 9500XL and

9500XV devices), as well as the Xilinx CoolRunner and CoolRunner2 are all

subtle variations on what we have already seen. A collection of logic array

blocks or optimized PALs programmatically connectable to one another

through a switch matrix.

With the 9500, the switch matrix was unique in that it was a fully

populated crossbar switch. This provided guaranteed routability since all

paths were possible. For the next generation XC9500XL and XC9500XV
devices, the switch was optimized and not fully populated.

The CoolRunner devices use an architecture similar to the Altera MAX
but feature an exceptionally low power profile.

Configurable Device Architectures 23

2.2 Field Programmable Gate Arrays

Field programmable gate arrays (FPGA) represent the most popular of

the programmable device architectures. FPGAs made up about 55% of the

programmable logic market in 2003. They have a more ASIC-like

architecture with many flip-flops and distributed routing.

LOGIC
BLOCK

LOGIC
BLOCK

LOGIC
BLOCK

LOGIC
BLOCK

Routing Channels

LOGIC
BLOCK

LOGIC
BLOCK

Routing Channels

LOGIC
BLOCK

LOGIC
BLOCK

Routing Channels

LOGIC
BLOCK

LOGIC
BLOCK

Routing Channels

LOGIC
BLOCK

Routing Channels

3 3

LOGIC
BLOCK

LOGIC
BLOCK

LOGIC
BLOCK

LOGIC
BLOCK

Figure 2-6. Generic FPGA Architecture

Ihe basic FPGA architecture is shown in Figure 2-6. Although there are
several varieties of fPGA architectures, they use the same basic approach.
Ihe variation is in the number and type of routing resources provided, the
functionality of the logic block and the availability of prefabricated cores of
specialized functionality. The specialized cores may include

24 The In-System Configuration Handbook

microprocessors, high-speed communications transceivers, digital signal

processors and other similar complex functions.

2.2.1 Xilinx FPGA Architectures

The Xilinx XC4000 family of devices typifies the FPGA architecture.

These devices have a routing structure that allows arbitrary point-to-point

routing but with limited routing resources. A design is realized by routing

signals between configurable logic blocks (CLB). Each CLB consists of two
four input look-up tables (LUT) that can act independently or have their

outputs routed to one or two constituent latches or flip-flops. Other

functions also available are the ability to access the configuration SRAM as

a register and the ability to direct the look-up table outputs through another

look-up table with an external signal to create functions of up to nine inputs.

Figure 2-7. Block Diagram of Xilinx XC4000 Configurable Logic Block

The Configurable Logic Blocks (CLBs) are organized in a two-

dimensional array separated by horizontal and vertical wiring channels. Each

Configurable Device Architectures 25

CLB contains flip-flops, multiplexers, and a combinatorial function block

that works as an SRAM based table look-up. Turning on pass transistors

customizes connections between CLBs. The pass transistors selectively

connect the CLBs to the interconnection resources, or interconnect lines

between the horizontal and vertical wiring channels. SRAM cells that are

scattered around the chip hold the state of the interconnect switches.

Surrounding the CLB array and interconnect channels are the programmable

IO blocks which connect to the package pins.

The overall architecture has powerful functional blocks connected to one

another by versatile interconnect. This directs design software to pack as

much functionality as possible locally in CLBs. In addition, the software

tries to limit interconnect dependencies.

The design of the Xilinx CLB and routing architecture is slightly

different for each product family. The first generation family (known as the

XC2000) is no longer available. It is however interesting to understand its

architecture. It contained a CLB with a single D flip-flop and a look-up

table that can form any Boolean function of four variables, or two functions

of three variables. The routing architecture used three resource types: direct

connection, general purpose interconnects, and long lines. Direct connection

lines were used to interconnect a CLB with bordering CLBs or IO blocks

above, below, or to the right. General purpose interconnects were used for

connections which span more than one CLB. There were four horizontal and

five vertical general purpose interconnect lines between the array rows and

columns, respectively. Each segment ran only the length of a CLB, and then

entered a switch matrix that provided programmable connections to ad-

joining row or column general purpose interconnects. Finally, each

horizontal wiring channel had one long line and each vertical wiring channel

had two long lines that spans the entire array. These long lines bypassed the

switch matrices. They route global signals (for example, clocks), or other

signals that needed minimum skew at multiple fan-out points.

The second-generation family was known as the XC3000. In the

XC3000 architecture, the logic block (CLB) is expanded and extra routing

resources are provided. The CLB can fulfill any Boolean function of five

variables or two functions of four variables. Two D-type flip-flops are

provided to capture both cell outputs if needed. The routing architecture is

similar to the XC2000 family except that each resource type has been
improved. Direct connections are allowed to all nearest neighbors and an
extra wiring segment is added to the horizontal general purpose interconnect.

26 The In-System Configuration Handbook

As well, an extra long line is added to both the horizontal and vertical chan-

nels.

Compared with its predecessors, the XC4000 family adds evolutionary

improvements to the basic Xilinx architecture. Greater logic capacity in each

CLB is achieved using a two-level look-up table. The 13 input and four

output CLB can form any of the following combinatorial logic functions:

• Two independent functions of up to four variables

• Any single function of five variables

• Any function of four variables with some functions of five variables

• Some functions of up to 9 variables

Compared with earlier families, the routing resources of the XC4000
family were significantly increased. The number of globally distributed

signals has increased from two to eight, and there are twice as many
horizontal and vertical long lines. The number of wiring segments has also

more than doubled, and CLB connectivity is improved by allowing most

CLB pins to connect to a high percentage of the wiring segments. However,

the switch matrix connectivity was reduced to 50% of that of the XC3000
family. The increased efficiency of the associated place and route software

indicated that changes in the routing resources were justified. It was

demonstrated that FPGA connection blocks needed high flexibility to

achieve a high percentage of routing completion, and that relatively low

flexibility is needed in the switch blocks.

A significant variation from the XC4000 was the XC5000 device.

Architecturally it is still a symmetrical array with SRAM based

programmable logic and interconnections. The internal chip organization

was dramatically changed. However, the device preserved pin-for-pin

compatibility with and had an identical programming and control interface to

the XC4000 family.

The logic blocks and their local routing connections were combined into

a larger entity called a VersaBlock. The VersaBlocks provided logic and

connectivity for efficient assembly of local logic functions. These local

functions are then globally interconnected through a General Routing Matrix

(GRM). This architecture provides five levels of interconnect hierarchy. This

was to be used to exploit the locality of logic in typical digital designs

efficiently.

Configurable Device Architectures 27

Heavily interconnected logic macro-functions placed in bordering CLBs

can be locally connected within the VersaBlock. This allows the GRM
resources to be devoted to connections between macro-function blocks.

The VersaBlock contains a CLB composed from four separate logic cells

(called LCO through LC3), with a local interconnect matrix. Note that each

of the four logic cells within the XC5000 CLB is similar in structure to the

original XC2000 family CLB; with a single D flip-flop and a four-variable

Boolean function generator. However, grouping four of these independent

logic cells in a tightly coupled VersaBlock unit allows efficient high-speed

carry chains or high fan-in logic functions to be easily created.

The alternative to this approach is to make interconnect less versatile

(and therefore less expensive). With this simplified interconnect, more
resources can be dedicated to logic cells by increasing their number.

A device of this sort has a two-dimensional mesh array structure that

resembles the gate array “sea of gates” architecture. Like the Xilinx

architecture, Static RAM programming technology is used to specify the

function performed by each logic cell and to control switching connections

between cells. An example of this device is the Xilinx XC6200 family of
FPGAs. The design contains 1024 identical logic cells arranged in a 32 X
32 matrix. The design is considered to be a mesh-connected architecture

since each cell is directly connected to its nearest north, south, east, and west
neighbors. As well as these direct connects, two global interconnect signals

are routed to each cell to deliver clock and other “low skew requirement”
control signals. The basic array architecture incorporates both nearest

neighbor and global connections in the logic cells. Besides these logical

connections, row select lines and bit select lines are connected to program
each cell’s SRAM bits.

The basic building block of the XC6200 design is a configurable cell

containing multiplexers and a function unit. Multiplexers that select the
source for the XI and X2 inputs precede the function unit. The function unit
can produce any logic function of the two inputs, or of acting as a D-type
latch. I here are four more multiplexers that select the function output or one
of the external inputs for routing to each of the four outputs (north, south,
east, and west).

A unique feature in the XC6200 10 pad design is its capacity to provide
simultaneous input and output on the same pin when communicating with
another device of the same family. This is done through a 2-level (ternary)

28 The In-System Configuration Handbook

logic-signaling scheme in which IO pads sense whenever two outputs are

driving each other by a contention scheme. Even during contention, the pad
can deduce the correct input value and pass it along to the internal circuitry.

1 his makes it easier to partition a single design across multiple FPGAs
because the increased connectivity reduces pin limits on communications
bandwidth.

The Virtex family of FPGAs (which includes the Virtex and VirtexE

devices) represents the fourth generation architecture for Xilinx. It evolved

from the XC4000. This architecture represents most devices currently being

shipped by Xilinx in 2003. This architecture features more routing

resources, a modified CLB and configurable block RAM. A ring of routing

resources surrounds the implementation that simplifies interconnections

among the LUTs, flip-flops, and GRM. Extra global routing resources are

made available and 2 high-speed pass-through routes are included in each

CLB.

The most recent addition to the Xilinx family of FPGAs is the Virtex2

family (which includes the Virtex2 and Virtex2Pro devices). Once again,

this architecture features further improvements to the CLB and a wider

variety of routing resources to promote faster design implementations. In

addition, the Virtex2 has more configurable block RAM as well as specific

architectural features to simplify clock management and a support wider

variety of IO standards.

The Virtex2Pro devices add PowerPC processors and programmable

gigabit speed IO transceivers to the fabric of the FPGAs. This allows

unprecedented capacity to receive, process and transmit data within the

physical boundaries of a single programmable device.

2.2.2 Actel FPGA Architectures

In the Actel ACT™ family FPGAs, a logic module matrix is arranged as

rows of cells separated by horizontal wiring channels. This organization is

similar to that found in the traditional style of Mask Programmed Gate

Arrays (MPGAs). Vertical interconnect segments of varying lengths are

available. Vertical segments in input tracks are permanently connected to

logic module inputs, and vertical segments in output tracks are permanently

connected to logic module outputs. Long vertical segments are available

which are uncommitted and can be assigned during routing. The horizontal

wiring channel resources are also segmented into varying lengths. The

minimum horizontal segment length is the width of a single logic module,

Configurable Device Architectures 29

and the maximum horizontal segment length spans the full channel. Any

segment that spans more than one-third of the row length is considered a

“long horizontal segment’’. Connections between interconnect segments are

permanently formed using the antifuse. Dedicated routing tracks are used for

global clock distribution and for power and ground tie-off connections. Actel

has three generations of FPGAs, called ACT1, ACT2, and ACT3.

In contrast to the Xilinx FPGA that uses a complex CLB cell, the Actel

approach uses small and simple logic modules. This does not imply that the

Actel design has inherent disadvantages compared with the Xilinx approach.

Research has shown that both of these approaches have merit.

Research results suggest the best choice for a programmable block

depends on the speed performance and the area requirements of the routing

architecture. The low-impedance and small area Actel antifuse structure is

better suited for use with a simple logic module. On the other hand, the

larger area and higher resistance Xilinx SRAM controlled transistor switch is

more apt for a complex logic cell.

The ACT1 family Logic Module (LM) is an 8-input, one output function

which can be used to build the four primitive logic functions (AND, OR,
NAND, NOR) with two through four inputs. The basic ACT1 Logic Module
circuit uses multiplexers to create programmable logic functions. The LMs
can also be used to make latches, flip-flops, XORs, AND-ORs and other
logic structures. Actel does not include dedicated hardwired latches or flip-

flops in the AC I I array since they can be built from LMs wherever needed
in the design. The ACT 1 family uses 22 metal signal wiring tracks in each
horizontal channel and 13 vertical tracks that lay on top of each column of
LMs.

The ACT2 family is Actel ’s second generation of FPGAs. It uses two
different types of logic modules: a Combinational (C) Module and a

Sequential (S) Module. The C module with eight inputs and one output is

similar in functionality to the LM used in the ACT1 family. The S-Module is

designed to set up high-speed D flip-flops or latches within a single cell

efficiently.

An S-module can create an up to 7-input Boolean function followed by a
D-type flip-flop or a latch. The S-Module can also be configured with a
transparent latch. Then, like the C-Module it can also carry out a purely
combinatorial 8-input function. C-Module and S-Modules are paired and
then grouped in alternating pairs to form the rows of the ACT2 array. The

™ The In-System Configuration Handbook

ACT2 routing structure is also similar to that of ACT-1, with the same three

types of routing resources:

• Vertical input and output segments

• Clock tracks

• Horizontal wiring tracks

However, there are 14 extra tracks in each horizontal wiring channel and

two additional tracks in each vertical column.

ACT3 is Actel’s third generation FPGA family that uses the same basic

array architecture with improved versions of the ACT2 family logic

modules. The new C-Module is functionally equivalent to that of ACT2,
while the S-Module has been expanded to include a full C-Module driving a

flip-flop. The ACT3 architecture contains four clock networks. Two of

which are dedicated high-performance clock networks, and two are general-

purpose networks. The ACT3 architecture continues to use the routing

resource structure of the ACT2 design with horizontal wiring channels and

vertical wiring tracks that overlay the logic modules.

2.2.3 Altera FPGA Architectures

The FLEX 8000 series was Altera’s first PLD based on SRAM
programming technology. This series used a fine-grain hierarchical architec-

ture including 4-input look-up table Logic Elements (LE) as the basic

functional building block. LEs are grouped into sets of eight to create LABs
as in the earlier family designs. These blocks are arranged into rows and

columns. Connections between LEs are provided by horizontal and vertical

FastTrack interconnect channels that span the chip. Both the Logic Elements

and the FastTrack interconnects are SRAM programmed in a similar fashion

to the Xilinx technology discussed earlier.

The FastTrack interconnect technology is used in the FLEX 8000 part.

The LABs are arranged into a two-dimensional array separated by horizontal

and vertical FastTrack wiring channels that span the entire array. An

advantage of this device wide routing is that it provides predictable wiring

delays when compared with segmented FPGA wiring schemes which use a

variable number of programmable interconnection points in the routing path.

The FLEX 8000 family parts have either 168 or 216 routing channels in each

row and 16 routing channels in each column.

Configurable Device Architectures 31

Each column of LABs has dedicated lines that route signals out of the

LABs and into the FastTrack column. The column interconnects can then

drive 10 pins or feed into the row interconnects to drive other LABs. The

number of wiring channel routing resources varies by family and part type.

Each row of LABs has a dedicated row interconnect for routing

macrocell inputs and outputs. The row interconnects can then drive IO pins

or feed other LABs on the chip. Each macrocell in the LAB can drive up to

three separate column interconnect channels. A row interconnect channel

can be fed by the output of a macrocell through a 4-to-l multiplexer that it

shares with three column channels. If the 4-to-l multiplexer is used for a

macrocell-to-row connection, then the three column signals can access

another row channel by an extra 2-to-l multiplexer.

Recent Altera FPGA architectures, like the Stratix and Stratix GX have

been subtle variations on the Xilinx Virtex II and Virtex II Pro approaches.

Architecturally similar, these devices included different processors than the

Virtex II Pro, different block RAM and high-speed transceiver resources.

Chapter 3

IN-SYSTEM CONFIGURATION
TECHNOLOGIES

1. Introduction

In the previous section, we looked at the architectures of programmable

logic devices in general. Architecture considerations are one of the primary

reasons in determining which programmable device a designer will choose.

Other considerations are, of course, price, availability, implementation tool

performance and, often, corporate guidelines.

However, in designing a reconfigurable system the reconfiguration

technology becomes another consideration. In this section, we will examine

the variety of configuration technologies used in programmable devices.

The devices discussed so far fall into two broad configuration families:

volatile and nonvolatile devices.

Nonvolatile devices keep their configuration information even when the

device is powered off. Typically, SPLDs and CPLDs are nonvolatile. This

means the boot-up time for these devices is instantaneous. When powered

up, a system made with these devices (if they are previously configured) is

ready to go.

Volatile devices forget their configuration after power down. This means

that these devices need to be reminded of their configuration at power on.

This is usually accomplished by keeping the configuration information in a

nonvolatile store like a PROM or a disk. The implication is that volatile

devices need some finite (and measurable) amount ot time after power on to

be reloaded with their configuration before being ready to go. FPGA

devices typically are volatile.

In-System Configuration Technologies 33

Table 3-1. Configuration Technology Characteristics

Feature
Antifus

e
SRAM EEPROM FLASH

Nonvolatile Yes No Yes Yes

Reconfigurability No Yes Yes Yes

Endurance 1 cycle Infinite
< 10,000

cycles

~ 100,000

cycles

Programming time Minutes < 1 second < 10 seconds < 2 minutes

External Prom No Yes No No

Power-up time Instant < 1 second Instant Instant

A small subgroup of FPGAs uses antifuses to control their interconnect

structure. Thus, these devices preserve their configuration when powered

down, they power-on instantly, and they need no external configuration

memory. This non-volatility comes at the cost of reconfigurability.

Antifuse-based FPGAs are usually one-time-programmable. In addition,

device programming often takes several minutes. These antifuse-based

devices represent about 6% of the FPGA market.

2. Nonvolatile Configuration Technologies

We will examine three separate configuration technologies in this

section:

1 .Antifuse cells

2. Electrically erasable and programmable cells

3.

Flash erasable and programmable cells

2.1 Antifuse Cells

Actel, QuickLogic and others have introduced commercial products that

use antifuse programming. In Actel FPGAs, a Programmable Low-
Impedance (ircuit Element (PLIC E) antifuse element is used. The normally
high antifuse resistance (>100 Megaohms) is permanently changed to a low
resistance (200-500 ohms) by applying suitable programming voltages. The
programmed anti fuse is used to make a direct electrical connection between
two metal lines. Adding three specialized masks to a standard CMOS
process is needed to make the PLICE antifuse. The physical structure
illustrated in Figure 3-1, consists of an Oxide-Nitride-Oxide dielectric layer
sandwiched between a top polysilicon layer and a bottom NT diffusion layer.
Applying a high voltage (about 18V) across the device and driving a high

34 The In-System Configuration Handbook

current through the link dielectric completes the programming. This causes

the dielectric to melt and results in a conductive link between the top and
bottom terminals.

QuickLogic also adds a unique three-layer structure to the standard

CMOS process to create their antifuse element, that they call a ViaLink. The

ViaLink uses an amorphous silicon layer that is sandwiched between the

first and second metal layers. An unprogrammed ViaLink has greater than 1

Mohms resistance and, like the PLICE antifuse, is programmed by applying

a higher than normal voltage. The resulting high current through the

amorphous layer causes it to permanently change to a conductive state with a

typical resistance of only 80 ohms. The area occupied by these antifuse

elements is small when compared to the other programming alternatives.

While this contributes to improved on-chip gate density, the large area

needed for the high-voltage transistors needed to support programming

offsets it. Another disadvantage of the antifuse technologies is that they need

adjustments to the standard CMOS process.

Since antifuse technology physically alters the connections irreversibly,

the approach does not lend itself to use in reconfigurable systems.

In-System Configuration Technologies 35

2.2 Electrically Erasable and Programmable Cells

EEPROM technology was the first electrically erasable technology used

for CPLDs. The programmable element is a special thin oxide capacitor that

conducts a small current when enough voltage is applied across the oxide.

The tunnel oxide, roughly 80 Angstroms thick, is used to inject or extract

charge from a floating gate by Fowler-Nordheim (FN) tunneling. The

floating gate is connected to the gate of a sense transistor in order to

determine the programming state. Besides the tunnel oxide capacitor and

sense transistor, two more transistors and an added control capacitor are

needed to create a single EEPROM cell that can be programmed and erased.

schematic

REPRESENTATION

Figure 3-2. Typical EEPROM Cell

Specifically, an EEPROM cell is a MOS transistor that stores charge on
an electrically isolated, conductive capacitor plate called a floating gate. A
typical cell is depicted in Figure 3-2. The floating gate is located above the
transistor channel. The charge on the floating gate produces an electric field

36 The In-System Configuration Handbook

that changes the conductivity of the channel. The measure of the channel’s

conductivity matches the amount of the analog value stored.

A typical N-channel EEPROM cell includes an N-channel silicon-gate

storage transistor. This transistor uses a floating first layer polysilicon gate

(floating gate), directly accessed by a second stacked polysilicon gate

(control gate), to trap and store electrons for long periods (typically

decades).

The N-channel EEPROM cell is considered to be in an erased state when
the floating gate has a net negative charge because of the presence of “hot

electrons” injected from the drain. When the cell is in a programmed state,

the electrons on the floating gate keep the N-channel transistor in a logical

off state. When the floating gate is strongly programmed to a positive

charge, the floating gate transistor’s channel becomes conductive. This state

corresponds to a binary digit, such as a logic 1

.

Conversely, the cell is considered to be in a programmed state when
there are no electrons on the floating gate and thus no net negative charge on

the gate. To erase the cell, the energy of the electrons stored on the floating

gate is raised until the electrons can “tunnel” through the tunnel dielectric

from the gate to the source. When the cell is erased, the N-channel transistor

is in a logical on state. Note that N-channel EEPROM cells are preferred

over P-channel EEPROM cells because of the programmability and speed

advantages of N-channel EEPROM cells.

If the EEPROM cell is erased, the floating gate becomes strongly

negative. In this case, the EEPROM cell is nonconductive, corresponding to

the complementary binary digit, a logic 0. Either programming or erasing

cells in an array makes digital nonvolatile memory.

When a high voltage (typically greater than 10V) is applied over the thin

insulator, electrons travel to and from the floating. This mechanism

programs the cells. Erasure of the cells is affected by reversing the voltage

applied during the writing process. This technique is known as hot electron

injection. The high voltages needed for programming are typically produced

on-chip and derived from the device supply voltage.

The tunnel oxide capacitor transports charge to and from the floating

gate, which controls the sense transistor. Two extra transistors are used tor

the program and read operations. A control gate capacitor transfers voltage

to the floating node for program and erase operations. Compared with

37
In-System Configuration Technologies

standard CMOS logic processes, three more device structures are created for

the EEPROM cell: the tunnel oxide capacitor, the control gate capacitor and

the high-voltage transistor. The resulting process complexity makes the seal-

ability of the process and the EEPROM cell more difficult in future

technology generations.

2.3 Flash Erasable and Programmable Cells

Technically, flash technology is a variation on the EEPROM technology

described above. The physics of cell programming and erasure is different

from that of EEPROM cells.

Like EEPROM cells, high voltages are needed for programming and

erasure. These high voltages (often greater than 10V) are typically produced

on-chip and drawn from the supply voltage.

The flash EEPROM cell typically incorporates its floating gate into the

device structure for improved cell area. By adding an NMOS transistor in

series, the flash transistor can be incorporated into the basic cell.

The behavior of an individual flash transistor is changed with a program

or an erase operation. When a flash transistor is in the erased state, the

threshold voltage (that is, the voltage at which the device turns on) is about 1

V. During programming, the threshold voltage increases above 5.5 V, so the

transistor does not turn on for a logic operation.

The physical implementation of the flash transistor includes a floating

gate polysilicon layer that is isolated from the silicon substrate by a thin

oxide layer roughly 100 angstroms thick. Above the floating gate is the

control gate polysilicon layer, with an insulating oxide-nitride-oxide layer

between them. The control gate is driven by internal logic circuits while the

floating gate is unconnected. When the flash transistor is in the erased state,

there is no net charge on the floating gate. By changing the electrical charge

on the floating gate, the threshold voltage may be increased.

The structure of the flash memory cell and EEPROM memory cell is

therefore similar.

During the programming operation, channel hot electrons (CHE) are

created near the pinch-off region. Some CHEs have enough thermal energy

to pass through the thin oxide and remain on the floating gate. The collected

electrons create a net negative voltage on the floating gate that opposes the

The In-System Configuration Handbook

electric field emanating trom the control gate. The result is a net increase in

the threshold voltage.

Applying 0 volts to the control gate and around 10 volts to the source

erases the flash transistor with the drain left floating. The electric field

between the floating gate and the source node is increased to the point where

Fowler-Nordheim tunneling takes place. Excess electrons are transported

trom the floating gate to the source. The transistor is designed to make the

erase process self-limiting. The electric field decreases as electrons are

removed from the floating gate. FN tunneling effectively stops when the

floating gate is electrically neutral.

Once the basic memory cell is in place, additional control logic must

surround it to allow addressable reading and writing. The fully controlled

and programmable flash cell is typically one transistor smaller than the

equivalent EEPROM cell. That results in a simpler cell structure, smaller

cell size and potentially higher integration density.

Flash EEPROMs typically use Fowler-Nordheim tunneling, as opposed

to hot-electron injection, for cell programming as well as for cell erase. A
voltage signal, usually less than 25 volts, is applied to the control gate. The

control gate is capacitively coupled to the floating gate. The drain is held

either at ground potential or at a voltage less than that applied to the control

gate, and the source is held at ground potential. Under such conditions,

Fowler-Nordheim tunneling occurs, in which electrons from the drain,

tunnel through a thin layer of Si02 (tunnel dielectric) to the floating gate.

A conventional EEPROM cell electrically induces Fowler-Nordheim

electron tunneling to erase the floating polysilicon gate. A high voltage

signal (typically greater than 10V) is applied to the cell drain while the

control gate is held at ground potential and the source is left at a floating, or

unspecified, voltage potential. As a result, the electrons stored on the

floating gate will tunnel through the tunnel dielectric to the source.

A conventional EEPROM cell contains an extra “select” gate to control

erasure of that cell. By providing a byte-decode transistor for each EEPROM
cell in a memory array to control its select gate, selective erase ot individual

cells or bits in the array can be achieved.

Although selective erase can thus be achieved, the extra select gate, for

example, causes an EEPROM cell to be larger. The flash EEPROM cell does

not contain an extra select gate and thus is smaller than a conventional

In-System Configuration Technologies 39

EEPROM cell. However, a memory array of flash EEPROM cells typically

cannot be selectively erased because of the absence of select gates.

It is usual for memory arrays that use flash EEPROM cells to employ a

“chip-mode’' program cycle. First, all the cells in the array are programmed

(logic off state). Second, all the cells in the array are erased (logic on state).

Lastly, individual cells in the array are selectively programmed, while other

cells remain in the erased state. This improves cell endurance. This means

that the cell can endure more erase and program cycles if this technique is

used. Note that all the cells in the memory array are programmed first

before they are erased to avoid “over-erasing”. For an over-erased cell,

unselected cells can become leaky leading to false sensing of a selected bit

on the same bit line and it will also be difficult to program the bit again.

2.4 Volatile Configuration Technologies

In contrast to nonvolatile technologies, nonvolatile approaches require a

static configuration memory store to be coupled with the configurable

device. As you might guess from its name, a volatile device loses its

configuration information when power is removed.

The advantage to this technology is the storage cell is smaller so greater

design logic densities can be built on a single chip. An advantage as well as

a disadvantage is the need for an external configuration store. It’s a

disadvantage since a separate device is needed which will increase the cost

and board space. It's an advantage since sophisticated users can design an
associated configuration memory system that allows sharing and use of low
cost off-the-shelf memories. It also allows users greater control of the

activation sequencing of the devices at power-up.

In the next section, we will look at a typical volatile memory cell.

2.4.1 SRAM Cells

The Static Random Access Memory (SRAM) FPGA programming
technology that was first introduced by Xilinx is also used in designs by
Altera, Lattice Semiconductor and others.

1 rogrammable connections in these FPGAs are made using multiplexers,
transmission gates, or pass transistors. The paths through these are controlled
by information stored in their controlling SRAM cells. Since the static RAM
is volatile, these FPGAs must be programmed to set the circuit configuration

40 The In-System Configuration Handbook

each time that power is applied to the chip. This can be carried out

automatically through a serial connection to an attached ROM (PROM) or

controller. Another approach would be to connect it in parallel mode using

an attached processor or controller that addresses the FPGA as a normal

static RAM. the chip area needed by the SRAM logic and interconnect

programming circuitry is the large. A typical SRAM cell uses from 4 to 6

transistors. More devices will be needed for the transmission gates or

multiplexers of the surrounding decode logic. A basic six-transistor SRAM
cell is depicted in Figure 3-3. The basic programming cell consists of cross-

coupled inverters that store the programming value. The value stored in the

cell can be changed using the input transistor. The input transistor can drive

more strongly than the competing inverter so it can overpower the feedback

inverter to change the state of the cell.

To write to the cell, the BIT line is driven to the needed logic value, say a

logic 1. The NOT BIT line is driven to its complement (a logic zero in this

case). The WORD line is then selected (driven to a logic 1) and the cross-

coupled inverters store the logic 1 after the WORD line is deselected.

To read the cell, the BIT and NOT BIT lines are pre-charged to Vdd.

Then the WORD line is selected and a set of sense amplifiers on the bit

lines, compare the voltage difference between BIT and NOT BIT to

determine the stored logic value

Since these devices are produced using standard CMOS SRAM
fabrication techniques, they can immediately benefit from advances in

SRAM CMOS processes.

In-System Configuration Technologies 41

Figure 3-3. Basic 6 Transistor SRAM Cell

The volatile nature of the SRAM programming can be either a

disadvantage or a major advantage. It imposes a system level overhead for

ROM storage and power-on initialization time. On the other hand,

programming nonvolatile devices may need stronger power supplies on

board that would not be needed for SRAM devices. As well, reconfiguring

SRAM devices is fast.

3. Configuration Access Ports

So far, we have seen there are several types of programmable logic

architectures and that each has its advantages and disadvantages for each

application. Volatile architectures may have advantages where

reconfiguration cycles and configuration time are valued but a disadvantage

if board space is at a premium. Nonvolatile architectures have definite

advantages in those applications that need instantaneous power-up or have

limited board space but may be at a disadvantage if the device is to be

frequently reconfigured.

The missing piece is how to configure these devices. In this section, wc
will examine the access mechanisms that device manufacturers have made
available to system designers to configure their PLDs. Often device

manufacturers provide access by a multiplicity of mechanisms. One

42 The In-System Configuration Handbook

approach that is almost universal across FPGAs is that a microprocessor can
be used. Also common is the ability to use a PROM and have the FPGA
control the configuration process itself.

These many possibilities allow the systems designer more freedom in

selecting a suitable approach. If the system is sensitive to the time it takes to

configure the devices and device pin resources are not strictly limited the

parallel access approaches should be considered. In parallel approaches,

multiple configuration data bits are transferred to the device with each

controlling clock pulse through a parallel interface. If the interface is N bits

wide then N bits can be programmed at a time.

If, on the other hand, device pin resources are strictly limited and the

system is less sensitive to overall configuration time then serial access

approaches should be considered. In serial approaches, a single

configuration data bit is shifted into the device with each controlling clock

pulse. Inside the device, bits may be loaded into a register for wider parallel

programming but each bit must be shifted into the device, one at a time.

This typically results in slower overall configuration times.

We will now examine each of the general approaches in more detail.

3.1 Parallel Access

No standard parallel access mechanism exists for PLDs. This means that

vendors have developed proprietary approaches that benefit their particular

devices. Parallel approaches exist for both volatile and nonvolatile devices.

The generic parallel access approach pictured in Figure 3-4 involves a

two-way data bus, an address bus, some configuration control signals and

sometimes, for nonvolatile devices, special voltage pin.

The data bus need only be two-way if the device allows reading and

writing data. In the case where the device allows data writes only (and a

control signal signals success or failure of the transaction), the data bus may

be one-way.

Nonvolatile devices may need a special voltage pin to provide

overvoltages to program the device. These are typically never needed tor

volatile devices.

In-System Configuration Technologies 43

The address bus may be optional in devices that maintain control over

their own address function during programming. Some devices encode the

address in the data stream removing the need for a separate address bus.

Nonvolatile devices typically multiplex the functionality of the parallel

access pins with regular 10 pins on the device. The device enters parallel

mode by raising the special programming voltage pin to a high level (greater

than 8V). When the voltage is lowered, the device pins return to their

normal role.

For volatile devices (and we are really talking about SRAM devices),

most devices have made an 8 bit wide data port available for high-speed

configuration of devices. This practically entails dedicating 8 data pins and

2-3 control signals on the device specifically for configuration. While

device manufacturers do allow you to multiplex the pins between

configuration and mission functionality, setting up this split task

environment measurably complicates system design. In addition, it

significantly complicates designs that need system reconfigurability. It is

also true that parallel approaches typically can only address one device at a

time. In systems that are made up of many programmable devices, the

routing of the configuration bus must be considered. It may contribute to a

more complicated board layout.

44 The In-System Configuration Handbook

< LU

O O
LU <

w d
>

ADDRESS

DATA

CONTROL

Figure 3-4. Parallel Access Diagram

For nonvolatile devices, parallel approaches are typically used when

programming individual devices in socket programmers. Historically this

approach was needed to facilitate application of special programming

voltages to the device being configured. In addition, some voltages need to

be pulsed during device configuration. Since the device is inserted in the

socket programmer specifically for configuration (and not to run in mission

mode), the device pins are used to apply the configuration address, data and

synchronization signals. Typically, the device senses the programming

voltage and goes into configuration mode in which the device pins allow

direct access of the configuration control logic.

In-System Configuration Technologies 45

In the last ten years, this approach has fallen out of favor as devices have

had more of the configuration control logic integrated into the device. This

matched up with a movement towards serial access approaches and in-

system configurability for nonvolatile devices. The implication lor socket

programmers has been simplification of their functionality. No longer need

socket programmers provide unusual programming voltages, nor need they

have access to all device pins. In addition, the configuration algorithms

themselves have been simplified as a result and the processing power of the

programmers could be reduced substantially.

3.2 Serial Access

The serial access mechanisms available are of two basic types - standard

and proprietary. Often both mechanisms are available on a single device.

For instance, Xilinx FPGAs support both IEEE STD 1532-based

configuration and their own 4 pin serial configuration port.

The number of device pins associated with either serial approach is

usually the same. Four (or sometimes five) pins are dedicated to

configuration. Some manufacturers allow the configuration pins to be used

as ordinary IO. As with the parallel access mode above, this approach can be

dangerous. It can lock out future reconfiguration of the device. This might

seem like a good idea at design time but when a customer calls with a design

problem, you will have wished otherwise. Electrical noise or stray voltage

spikes can accidentally trigger the mechanism to turn the IO pins back into

configuration port pins.

I he proprietary serial access mechanisms are popular with volatile

devices that need to connect to an external nonvolatile program store.

SRAM-based device manufacturers simplify connection of their devices to

serial programmable read only memories (SPROM) using similar (but

different) proprietary serial mechanisms. These serial connections allow for

daisy chaining to both programmable devices and SPROMs to allow

designers to have a central nonvolatile storage area for all devices in a

system.

figure 3-5 details a typical serial interconnect technique. Configuration
data is serially shifted into the target device using an externally provided
clock. The configuration data is stored in the first device until its

configuration memory is full. If data continued to be clocked into the device,
it is passed onto the next device in the serial chain.

46 The In-System Configuration Handbook

I he clock can be connected to all devices in the chain or passed from one
device to the next, as data becomes available to pass on to the next device.

When the devices have configured successfully they signal completion
using COMPLETED. COMPLETED can checked from each device

individually. Alternatively, the COMPLETED signals can be connected to

one another to form a wired AND connection to signal completion only

when all devices have successfully configured.

Extra control signals may be provided to reset the device or to signal

failure status information to allow for better diagnostics.

DATA IN-

CLOCK-

data—

»

DEVICE A CLOCK— DEVICE B

-COMPLETED

Figure 3-5. Proprietary Serial Access Diagram

If a systems designer mixes devices from different manufacturers and

plans to use the proprietary serial mode then they must use separate serial

daisy chains for each manufacturer. Sometimes different generations of

devices from the same manufacturer may not be able to coexist in the same

serial daisy chain. Designers should watch for this situation. Separate

chains mean separate infrastructure to support each chain, which complicates

the prototyping and manufacturing flows and increases total system costs. It

they are using IEEE STD 1532-based approaches then that penalty does not

apply.

In-System Configuration Technologies 47

Figure 3-6. IEEE STD 1532 Serial Access Diagram

The standards-based approach is to use the IEEE STD 1 149.1 test access

port (TAP) of IEEE STD 1532 compliant devices to gain access to the

configuration control logic. The connections are shown in Figure 3-6. They

are identical to the connections required for IEEE STD 1 149.1

.

The TAP is usually a dedicated set of pins since it serves both configura-

tion and test roles. Effectively there is no added pin penalty for using this

access mechanism since these pins are already used for IEEE STD 1 149.1

test. If a system designer either finds or develops a suitable application to

drive the TAP, it is possible to configure devices from all manufacturers in a

single serial chain. We will discuss approaches to provide a universal

solution of this sort in later chapters.

Chapter 4

CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES
Configuration Data Specification

1. Introduction

Initially the increasing popularity of programmable logic devices was
attributable to two developments. For CPLDs, their low cost and ease of use

allowed them to be a cost-effective alternative to discrete logic. Yet, the

CPLDs’ need for externally applied high voltages to effect reprogramming

limited their reprogrammability to prototyping applications. During

prototyping were the devices affixed to the board in sockets to simplify their

easy removal for reprogramming.

For FPGAs, their rapid reprogrammability but rather high cost led to

their use as an excellent rapid prototyping platform. Then when production

began, ASICs would replace the FPGAs to reduce the overall system cost.

The past five years have seen many technological advances in the PLD
marketplace. In this period, nearly all CPLDs introduced featured in-system

configurability. This allowed programming of devices at system voltages

reducing the need for unusual voltages for configuration.

In addition, both the price and gate density of FPGAs improved to allow

their consideration as a practical alternative to ASICs, even in production.

Another significant advance has been the widespread adoption of the

communications protocol and control logic associated with IEEE STD
1 149.1 as the method for controlling in-system configuration operations.

Reduced price, higher densities and a simple communications protocol

have together launched reconfigurability as a valuable feature ot

programmable logic devices. Exploiting this feature needs an automated

Configuration Data Specification ^

manner in which to specify how to configure a device and with what data to

configure them. To that end, there have been several high-level languages

and data description formats proposed. So far, only two have seen

widespread industry adoption. We will examine all these formats since all

have some measure of popularity. We will end with a discussion of IEEE

STD 1532. The IEEE STD 1532 is the approach with the most momentum

and industry acceptance.

2. JEDEC Standard Data Transfer Format

This file format is an ASCII file most commonly known as the JEDEC

file format (which unfortunately sells the JEDEC organization short for they

have shepherded development of hundreds of standards and file formats).

The JEDEC file format is formally known as JEDEC Standard JESD3-C,

Standard Data Transfer Format Between Data Preparation System and Pro-

grammable Logic Device Programmer. It is available from the Joint

Electron Device Engineering Council (JEDEC) at no charge for individual

use or for a fee for redistribution.

The formal title best describes the key goal of this file format. It is

chiefly a data format. It does not define any information about the algorithm

to program a device. It does not define a communications protocol. It does

define a data format for specifying the programmed states of the

programmable device’s configuration memory (in the nomenclature of

JESD3-C this is the fuse information). The standard also specifies a format

for defining simple functional test vectors for application to the device. The

motivation for this was the concern that with increasing device complexity a

mechanism for verifying the device is functioning as expected, would be

invaluable.

Note the last revision to this standard occurred in 1994. The state of

programmable device technology, the density of PEDs and the general

acceptance of these devices were different then. Nevertheless, the JEDEC
file format has endured (for CPLDs), to describe the device programming
data. The use of the functional vector specification has fallen out of favor as

programming devices and technology has become much more reliable. As
device densities increase and the data captured in a JEDEC file increases, it

is likely that this file format will fall out of favor and be replaced.

Let us now examine the basic JEDEC file.

50 The In-System Configuration Handbook

2.1 Basic File Organization

The JEDEC file is a list of fields bracketed by a start of transmission

character (STX) and an end of transmission character (ETX). Immediately
following the EXT character is a 16-bit transmission checksum that is a sum
of all character values between the STX and ETX. This checksum allows
for some error detection. It can detect when the file has been tampered with
or garbled in transit from one location to another.

All fields in a JEDEC file start with a letter. End of field data is

described by a The key fields in a JEDEC file are the L, C and V fields.

2.1.1 The L Field

The L field is the field that contains the fuse data information. This

specifies how the program memory of the PLD should be configured to

affect the functionality requested by the designer. Because the JEDEC file is

based on PROM requirements, it assumes that address space of the PLD is

contiguous and fully populated with programmable cells. The L field starts

with an address designator, then after a space is a list of binary fuse values to

be programmed, marked by a 1 or a 0. The fuse values are programmed

from the address designated. The fuse field terminator is a *. If the next

record specifies an address that is not the immediate next address, then all

fuse locations until the mentioned address are filled with a default value

(denoted elsewhere in the JEDEC file). To understand this better, consider

the example in Figure 4-1

.

L0000 01010101 10101010 11111111*
L0030 10101010 00000000 01010101*

Figure 4-1. Sample L Field

The first L field says the fuse addresses start at location 0 with 01010101

and the rest of the fuse values follow with 10101010 starting at location 8

and 11111111 starting at location 16. However, note the next L field

address value is 30 but the previous fuse specification ended at address 23.

This means, since the address space is always contiguous, that locations 24

through 29 will be filled with a default value. The default value, which can

be either 0 or 1, is the same value for the whole file and is specified by the F

field. If the default were 0 then the next locations would be programmed as

000000. After that, the value 10101010 is programmed into location 30.

Configuration Data Specification 51

2.1.2 The C Field

The C field provides a fuse checksum. The checksum value that follows

the ETX represents the sum of all characters in the file. On the other hand,

the fuse checksum represents only the value of the sum ot the fuse values as

represented in the L fields (incorporating any implicitly applied default

values) but not including the address values. In the example above the

checksum would be calculated over 01010101 10101010 11111111 000000

(the default values) 10101010 00000000 and 01010101. This checksum is

often used as a quick identifier of device programming.

2.1.3 The V Field

The V field is the vector field. This specifies the set of functional test

vectors applied to a device to test its functionality. The V field consists of

two parts. The vector number that appears beside the V identifies the vector.

This decimal number identifies failing vectors, syntax problems, or the like

to the end user. Following the vector number and separated from it by a

space is the vector information itself. The vector itself is a set of

alphanumeric characters that represent logic values applied to or sensed on

the device pins. The characters represent steady logic values applied like 0

or 1 or pulses and edges. Output values are logic one, zero or high

impedance states.

2.1.4 Other Fields

As well as the previous fields, there are about 15 other fields that can
specify unique programming options, device size and certain pin grouping
for sophisticated testing. It is also worth noting that a comment field is

available as well. Any field beginning with an N is a note and is used for

descriptive or explanatory comments.

2.2 Using JEDEC Files

Recall that this file format has only programming data in it. Therefore
certain assumptions made about the target device can result in a

circumstance in which even though the format is standard, the interpretation

is not. For instance, needing a contiguous address space based on all

programmable devices being PROM-like in their memory layout is typically
not true for modem devices. I his means the address values named in the
JHDBC file become irrelevant and the program data addresses need to be
calculated outside the file.

52 The In-System Configuration Handbook

In the end, this reduces the JEDEC file to a container for storing

configuration data. The manner in which the data is interpreted and applied

to the device needs customization for each device. The algorithm underlying

this customization is not available in the JEDEC file itself.

Another issue with JEDEC files is the inability to store data for large de-

vices efficiently. The file represents all device data as 1 and 0 characters.

The single method for data compression allowed is specifying a default fuse

value. This tells to which value to set unspecified fuse address locations.

This method works acceptably well when there are long consecutive

sequences of l’s or zeroes in the device address space. If the sequences of

l’s or zeroes are moderate in length then more L records are needed which

might increase the file size. In addition, a contiguous address space is

necessary for this to work correctly.

In summary, the JEDEC file, that served us so well for so long, is nearing

the end of its useful life. In addition, because it is a data only file format, it

does not serve the reconfigurability application space well since the

algorithm needs to be custom developed for each device.

Chapter 5

CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES
Configuration Algorithm with Data Specifications

1. Serial Vector Format

Serial Vector Format (SVF) is an ASCII file format designed to promote

the exchange of boundary-scan data between development systems and

boundary-scan hardware. It was developed jointly by Texas Instruments and

Teradyne. Control over the file format has since been handed off to

boundary-scan solution provider ASSET InterTech. The most recent

revision of this file format is Revision E from March 1999. Copies of the

SVF specification are available at no charge direct from ASSET InterTech.

The format can be thought of as assembly code for boundary-scan in that

it defines the low-level simple state machine operations typically associated

with running device and interconnect tests. It also mixes the test algorithm

and the test data. Of late, the format has also been used to describe device

configuration. While there are many subtleties of the format, it is a file that

contains boundary-scan commands and data. The key commands are SIR,

SDR and RUN I ES V. We will describe the essentials of SVF format using

the example below.

1.1 SVF File Structure

In the coming sections, we will examine the commands that make up an
SVF file.

1.1.1 The SIR Command

In using a boundary-scan device, the 16-state boundary-scan state

machine is traversed. The roles of each state are well defined. For instance,

the Shin IR state shifts instruction data into the device's instruction register.

Configuration Algorithm with Data Specifications 55

After instruction loading, associated data (if any) can be loaded and device

operation execution completed. The purpose of the SIR command is to

direct the state machine to transition to the Shift IR state and load the

specified instruction data into the instruction register.

ENDIR IDLE
SIR 8 TDI(EA)

Figure 5-1. SIR Command Example

In Figure 5-1, the SIR command directs the data EA (represented in

hexadecimal) into the device instruction register. The rightmost bit shifts

into TDI first. The ENDIR command says that after the shifting is complete

the Run Test/Idle state should entered. This is true for all SIR commands
that follow the ENDIR command.

The SIR command can also optionally test data sensed on TDO as data

shifts in to TDI. In addition, input and output data masking can point out

which bits are significant.

1.1.2 The SDR Command

Similar to the SIR command, above, the SDR signals the specified data is

shifted into the data register when in the Shift DR TAP controller state. This

command typically follows an SIR that sets up the target data register. The
data associated with the active instruction is then shifted in using the SDR
command.

ENDDR IDLE
SDR 16 TDI(A5C5)
SDR 16 TDI(OOOO) SMASK(OOOO) TDO(OOEO) MASK(FFFF)

Figure 5-2. SDR Command Example

In Figure 5-2, there are two SDR commands. The first SDR command
shifts in 16 bits of data associated with the previous SIR command. The
data (as before) is represented in hexadecimal. Also, as before, the
rightmost bit of the input data (A5C5) is shifted in first. Similar to the
ENDIR command, there is also an ENDDR command that points out to
which state the state machine should transition after completing a data shift

in the Shift DR tap controller state. In our example, the command says that
Run 1 est/Idle is the end state.

56 The In-System Configuration Handbook

The second SDR command shows how it can test data shifted out the de-

vice on I DO. Once again there is a 16-bit shift (since this is the size of the

target register). In this case, however, the data shifted in on TDI is don’t

care data. Although the TDI data is all zeroes, the SMASK signals (since it

too is all zeroes) that none of those bits are significant (a 1 points out

significant bits in the associated bit position of the SMASK). This give the

system that is applying the stimulus the choice of producing arbitrary values

on input since they are all don’t cares.

The understanding is different however on the expected value side. The
data expected on TDO is 00E0 (where as before, the rightmost bit represents

the data value first seen shifted out on TDO). The MASK field says that all

values seen on TDO are significant. Once again, a 1 marks significant bits

in the associated position of the MASK. Since the MASK value is all 1 ’s

(FFFF), all values are significant and all TDO values shifted out must match

exactly with those named in the TDO field.

1.1.3 The RUNTEST Command

Many boundary-scan actions and most every configuration operation

need that some time to pass for the procedure to complete. The IEEE STD
1149.1 TAP state machine has a state typically used for this expressed

purpose. Test (like built-in self-tests) execution, signal settling (say, when
using INTEST) or device programming and erasure typically completes in

the Run Test/Idle TAP controller state.

The RUNTEST command allows description of just this operation. It

can signal either an absolute time spent in Run Test/Idle or a specific

number of TCK pulses. In addition, the command has the added flexibility

of being able to specify a TAP controller state to which to transition after

completion of the appointed wait period.

SDR 16 TDI(A5C5)
RUNTEST IDLE 32 TCK

Figure 5-3. RUNTEST Command Example

In Figure 5-3, the RUNTEST that follows the first SDR command says

that 32 TCK pulses should occur in Run Test/Idle. Since no exact end state

is named, after completing the mentioned pulses the state does not change.

Configuration Algorithm with Data Specifications

1.1.4 Other Commands

57

There are wide varieties ot other commands that are available. These

include:

• Commands for handling parallel IO pins (rather than just the

boundary-scan TAP pins)

• A command to effect arbitrary TAP state machine transitions

• A command to control the optional TRST pin of the boundary-

scan TAP
• A command to set the TCK frequency

Because boundary-scan devices typically connect in serial chains, a set of

commands is available to specify fixed data prefixes and suffixes shifted in

before and after data mentioned in the file's SIR and SDR commands. This

allows quick customization of an SVF file produced targeting a single device

by itself to target the device in a fixed serial chain.

1.2 Using SVF Files

SVF files’ original use was description of basic boundary-scan test

sequences for test hardware like automatic test equipment and PC-based

tools. The point was to develop a format easily produced by test software

for use on a multiplicity of test platforms. It can be thought of as assembly

code for boundary-scan tests.

The generation of SVF files for configuration is typically from vendor-

supplied tools that examine the configuration data contained in, say, JEDEC
files. Then, by having specialized knowledge of the configuration

algorithm, the vendor tool transforms the configuration data into the SVF
statements that properly sequence the information into the device.

When you want to run an SVF file, you can do it in one of two ways.

I he file can be directly interpreted and executed by a software or hardware

interpreter. T his is simplest approach but has the drawback of tending

toward slower execution times and needing memory proportional to the size

of the file. Straight interpreted solutions are simple to implement and are

often available as shareware.

Another approach is to first compile the SVF into format more suitable

for direct execution on the target hardware and potentially including memory
and run time optimizations drawn from examining the target SVF file. This

58 The In-System Configuration Handbook

results in faster and more efficient execution of SVF files. Because of their

relative complexity, you must buy solutions of this sort typically from
boundary-scan tools developers.

There were several assumptions made that were suitable for testing but

not so tor configuration. Among the assumptions made were the following:

• The target tests are short sequences of (potentially) long vectors.

• The target tests are go/no go tests with no need for complex

program control flow.

• The target tests have no run time dependencies.

These assumptions are reasonable for interconnect and device tests but

when applied to device programming they fall a bit short. In particular,

vector sequences that configure devices can have long sequences of po-

tentially long vectors. This makes the SVF file large. In fact, the file is

much larger than expected by the original design of the SVF specification.

In addition some legacy configurable devices (for example, those based

on flash technology) have the characteristic that erase and often program

operations are non-deterministic. This means that even though instruction

and data sequence correctly to erase or program the device, it may be the

case that the process may need a variable number of retries of the same

operation to complete successfully. SVF does not have this feature as part of

the language.

Some legacy configurable devices have configuration algorithm parame-

ters (like erase times, program times and sometimes the algorithm flow)

depend on data read out of the target device. SVF does not have a

mechanism for reading data out of the device and using it as part of the SVF
file.

Despite these limits, SVF because of its broad acceptance in the test

community has been able to serve as a useful method for describing most

device configuration algorithms. The matter of file size remains an issue

with SVF since data is represented in ASCII hexadecimal.

To address the limits, some vendors who produce SVF to describe device

configuration have added proprietary commands in comments in the SVF

file which when correctly interpreted result in faster and more efficient

device configuration. Others have proprietary rules for interpreting the

produced SVF for devices to configure more efficiently. In either case, SVF

Configuration Algorithm with Data Specifications 59

executed without the special commands or according to standard

interpretation the devices will still configure.

2. STAPL - Standard Test and Programming Language

To address the limits of SVF and provide a platform that better solved

the issues associated with configuring programmable devices on embedded

processors, Altera Corporation put forward a proposal high-level language

known as JAM. Not an acronym, only a name, JAM incorporated all the

functionality and the essential syntax of SVF and wrapped a BASIC-like

program control flow around it. In addition, it standardized a data

compression format for use in the language. JAM was submitted to JEDEC
for standardization shortly after its first proposal.

With the support of JEDEC committee JC42.1, over the course of several

years, JAM was changed, improved and standardized. The new standard

version of this language became known officially as JEDEC Standard

JESD71 Standard Test and Programming Language (STAPL). As any

JEDEC standard, the SI APL specification is available free for personal use

from JEDEC or for a fee for redistribution.

Support for STAPL is spotty with some semiconductor vendors

supporting wholeheartedly (for example, Altera), others tepidly (for

example, Xilinx) and still others not at all (for example, Lattice

Semiconductor). A similar situation exists in the tool vendor space.

Since the STAPL is to some extent based on SVF, the focus of the

description will be on the differences.

2.1 Basic STAPL File Structure

Because the SI APL file describes multiple distinct and distinguishable
functions (for example, erase, program, verify) in a single file, it is a more
sophisticated language than SVF or a regular JEDEC file. Because STAPL
includes both data and algorithm (but with some degree of separation), it has
a more formal structure. To understand STAPL files it is important to
understand the overall file structure first before going into the details.

60 The In-System Configuration Handbook

A STAPL file is comprised of a sequence ofNOTE statements, ACTION
statements, PROCEDURE and DATA statements and then finally a CRC
statement. The order of the statements is exactly as shown.

NOTE statements contain text strings that can identify the contents and
features of the STAPL file. NOTE statements are not executable - they are

purely informational.

A STAPL file must contain at least one ACTION statement. The
AC DON statements match the operations that are available to end users of
the target device. Examples of ACT IONS would be erase, program or verify

Each ACTION is in turn comprised of one or more PROCEDURES. The
PROCEDURES associated with an ACTION are listed in order of execution.

An example of this would be that if an end user specified the ACTION
“program”, it might consist of the PROCEDURE sequence of erase,

followed by program, followed by verify. A further flexibility is that

PROCEDURES can be optional or recommended allowing the user to enable

or disable their execution in a specific session of the STAPL file. Each

PROCEDURE contains executable statements that include all the basic func-

tionality of SVF (like loading data into and out of the instruction and data

registers). Instead of using SIR and SDR, STAPL uses IRSCAN and

DRSCAN. The syntax of the commands is slightly different but

immediately obvious to those familiar with SVF. STAPL however extends

SVF to include control flow statements like “IF <condition> THEN” and

“FOR” loops. In addition, STAPL allows variables to read and store data

from the device. This data can be tested against an expected value. Such

testing can direct program execution along different paths.

The DATA block contains variable declaration statements.

PROCEDURES can only use variables in DATA blocks if the

PROCEDURE signals this through the USES keyword. DATA blocks

separate DATA that is likely to be updated from other program data.

The CRC statement contains the cyclic redundancy code of the entire

STAPL file. It verifies the overall integrity of the file.

In keeping with the intended strict application space of device

configuration (and test), the standard did not define any improved features

that might turn STAPL into a more general purpose programming language

or unnecessarily burden implementation.

Configuration Algorithm with Data Specifications 61

An example of this is that each STAPL file is a standalone application.

The standard does not allow for linking multiple STAPL files together to

share assigned variable space or procedure calls. So a STAPL file that

describes the configuration algorithm for Device A and the STAPL file that

described the configuration algorithm for Device B will be performed

sequentially. The presumption is that each application will have its resources

freed up after execution. In addition, STAPL has no string variables

(although it has string constants), no floating-point variables or arithmetic.

A feature key for programmable logic was including a data type to

represent and store compressed data. The compression technique referred to

as the Advanced Compression Algorithm (ACA), looks for repeated

sequences of groups of 8 bit data patterns in a data stream. Identified

sequences that repeat are represented as compressed data by referring to

their first encountered location offset in the data stream rather than the actual

data. This compression technique works well when data is not too random

(for example, not encrypted) and when the data stream does not contain

address information (which because it increments breaks the pattern algo-

rithm of ACA).

STAPL has limited user input and output functionality. It allows message
printing using the PRINT statement and the display of integer values to the

end user using the EXPORT statement.

These limits make sense given the scope of the problem the language

intended to solve.

2.2 STAPL File Example

To complete understanding of the operation and use of a STAPL file, it is

useful to work with a simple example. The sample file in Figure 5-4 helps
explain the basic functionality of STAPL.

62 The In-System Configuration Handbook

'Set up NOTE fields with generation,
'run time and device information
'None of this information is executable
' None of this information is used by the STAPL program
NOTE "CREATOR" "STAPL Generator 5.2.3"
NOTE "DEVICE" "TEST32MC";
NOTE "DATE" "1997/12/31";
NOTE " STAPL_VERSION" " JEDSOO-A"

;

NOTE "ALG_VERSION " " 3 "

;

NOTE " STACK_DEPTH " " 2 " ;

NOTE "MAX_FREQ" "10000000"; ' 10MHz
NOTE "TARGET " " 1 "

;

NOTE "IDCODE " "00FDEC01";
'Beginning of executable portion of file
'Define ACTION for file
ACTION READ_IDCODE = DO_READ_IDCODE;
'Define PROCEDURE used
PROCEDURE DO_READ_IDCODE;
'Declare variables for data arrays
BOOLEAN capture_data [32]

;

BOOLEAN idcode_instr [9] = #001101000;
BOOLEAN all_ones[32] = $FFFFFFFF;
INTEGER i;

'Initialize device by going to Test Logic Reset
STATE RESET;
'Load idcode instruction
IRSCAN 9, idcode_instr [8 . . 0] ;

'Capture idcode shifted out of device
DRSCAN 32, all_ones [31 . . 0] , CAPTURE capture_data [31 . . 0] ;

'Display captured value on console
EXPORT "IDCODE", capture_data [31 . . 0]

;

ENDPROC;
'File CRC
CRC 3759;

Figure 5-4. Sample STAPL File

The task described by the file is contrived. The ACTION named
44READ_IDCODE” when invoked calls the PROCEDURE named

“DO_READ_IDCODE”. The PROCEDURE named
uDO_READ_IDCODE” sends the TAP state machine to the Test Logic

Reset state and then directs loading device's IDCODE instruction. After

loading the IDCODE instruction, the IDCODE value itself may be shifted

out of the device. In this PROCEDURE, the value is shifted out 32 times.

After each shift the first bit out is tested to see if its value is logic ‘
1 \ IEEE

STD 1 1 49. 1 requires the first bit of the IDCODE value be a logic
4

1 \ It it is

not a logic
4

1
’ there are two possible reasons. The first is the device is

designed incorrectly and the IDCODE value does not adhere to the standard.

Configuration Algorithm with Data Specifications 63

While this was a real possibility a decade ago it is unlikely now that IEEE

STD 1149.1 is well publicized and understood. The second, and more

likely, possibility is there is a signal integrity problem or a bad connection

between the device and the system executing the STAPL application. This

loop therefore provides a crude system integrity test. If the test passes 32

times in a row, the execution completes with a success status and the

IDCODE value is returned to the console application. If the test fails once,

the “IDCODE read incorrectly” error status is returned and the wrong

IDCODE value as read is returned to the console application.

The NOTE information contained at the top of the STAPL file contains

data suitable for display to the end-user as well as data that are valuable for

the interpreter itself to promote more optimal processing of the file. The

NOTE data includes information like:

• The maximum depth of the call stack

• The maximum clock frequency ofTCK
• The number of devices included in the boundary-scan chain

accessed by the STAPL file.

• The IDCODE of the device in the STAPL file.

I hese values can be useful to the interpreter in setting up the run-time

environment, pre-allocating memory and deciding if the expected operating

conditions can be met on the execution platform. While there is no
requirement in the standard that the interpreter validate these values, it is

valuable to use one that does.

2.3 Using STAPL Files

By building on SVF, STAPL provides similar functionality but includes
features suitable for programmable logic devices. This extra functionality

included control flow and data compression. The target platforms included
those of SVF (automatic test equipment and PC-based tools) but also
STAPL intended to address the embedded processor space. As with SVF, a
key need was developing a format easily produced by test software that was
usable on a multiplicity of test platforms.

I here was a vision that S I APL files would supplant the existing JEDEC
format as the device program file output from PLD design tools. While
some vendors took steps to begin the effort to realize that goal, others were
less enamored of the solution. I hey were concerned about several key
issues:

64 The In-System Configuration Handbook

• 1 he general effectiveness of the data compression algorithm
• The difficulty of updating configuration data or the configuration

algorithm separately

• The applicability of the solution to resource limited embedded
systems.

• The large run-time memory appetite of the approach

Experimental results pointed out that ACA format would not afford high

compression for their data formats (for reasons previously told)

The produced STAPL files would have to include algorithm and
programming data. In the case in which the algorithm or program data

changed separately, new end-user procedures would need to be in place that

were burdensome and complicated for the end-user.

In targeting the embedded system environment, the basic STAPL
interpreter was large. It would not fit in the code space of available 8 bit

micro controllers (these were key platforms that needed support then). In

addition, the STAPL interpreter was significantly slower than the available

customized solutions.

The interpreter's run time memory needs were excessive in simple-

minded implementations since the compressed data needed to be fully

decompressed at run time. This means the run time memory needed equals

the compressed data size plus the uncompressed data size. This effectively

incurs a memory penalty for using compression. To provide a more intel-

ligent approach for end-users would be obliged a support burden in added

system memory costs.

To address these issues, after standardization some vendors (notably

Altera) spent some effort developing a customized embedded solution.

These solutions supplemented the STAPL standard by compiling a STAPL
file into a proprietary byte code format. This byte code format could then

run on a smaller and more efficient interpreter. The results were much better

in both run time and memory consumption. The end-user that wished to use

the byte code format would get the “compiler" to create the byte code file

from the STAPL source file. Then they would get the byte code interpreter

and customize it to their intended platform. Neither the compiler nor the

byte code itself was published as part of the STAPL standard so they

remained proprietary technology. This acted as a barrier to wider acceptance

of the byte code approach.

Configuration Algorithm with Data Specifications 65

The typical flow now used to produce a STAPL file is similar to that of

the SVF file in the best case and more complicated in the worst case. In the

usual (and best) circumstances, vendors provide applications that read

configuration data stored in, say, a JEDEC file. Then by having specialized

knowledge of the target device's configuration algorithm, they are able to

produce a STAPL file containing both the specific sequence of configuration

instructions needed and the data in the ACA compressed format.

In less ideal conditions or in conditions in which the vendor has no direct

STAPL support, SVF files are produced as previously described and these

SVF files are then translated to STAPL format. This path often results in

less than optimal STAPL files that are larger and slower than they would be,

had STAPL been directly output.

One less desirable but still possible generation scenario is to write the

configuration algorithm by hand in STAPL and then attach the data in ACA
format to the handwritten STAPL algorithm.

If STAPL byte code is produced then a further translation step is always

needed. This output is only as efficient as the STAPL source input to it.

In the same way that SVF was optimized for testing, one might argue that

STAPL was optimized for programming.

The test specific functionality in the STAPL standard is optional.

Specifically, the functions used independently to set up non boundary-scan
pin values are not part of the mandatory standard implementation.

The configuration only” functionality merely adds overhead to test

implementations.

Of course, if you intend to integrate device configuration and test then
these issues do not apply.

Chapter 6

CONFIGURATION DESCRIPTION AND
SPECIFICATION LANGUAGES
Separated Configuration Algorithm and Data Specifications

1. Java API for Boundary-Scan

While STAPL was in development, there were concerns raised about

STAPL’s flexibility, infrastructure support and the ability of STAPL to

develop into a practicable cross platform solution. To address these issues

developers proposed a new Application Programming Interface (API). An
API is library of related routines that provide well-defined and fully

specified access to a particular product or feature. In this case, the feature is

the device’s boundary-scan test access port. The idea was to leverage the

infrastructure of an already proven technology that featured true portability,

broad-based tools support, widely available platform support, a broad

knowledge base and true scalability. The single programming language that

delivered all those characteristics was Java.

In addition, basing development on Java meant the immediate

availability of a vast reservoir of Java libraries that could ease such

necessary functionality as remote connectivity (for system update), security

(for transmission and transaction security). Because Java is an object-

oriented language, standard object interfaces could be defined. Vendors,

users and developers could then customize these to provide proprietary func-

tionality in a standard way. There is a suite of certification tests that all Java

platforms must pass. These are managed by Sun Microsystems to ensure that

all Java platforms will behave identically. The problem of platform

certification is therefore independent of the API.

1.1 Java

Java is an object-oriented programming language developed by Sun

Microsystems. It shares many superficial likenesses with C and C++ (for

Separated Configuration Algorithm and Data Specifications 67

instance, for loops have the same syntax in all three languages). It is not

based on any of those languages, nor have efforts been made to make it

compatible with them.

Java was originally created because C++ proved inadequate for certain

tasks. Since the designers were not burdened with compatibility with

existing languages, they were able to learn from the experience and mistakes

of previous object-oriented languages. They added a few features C++
doesn’t have like garbage collection and multithreading; and they threw

away C++ features that had proven to be better in theory than in practice like

multiple inheritance and operator overloading.

Even more importantly, Java’s ground-up design allowed for secure

execution of code across a network, even when the source of that code was

unknown and possibly malicious. This required removing more features of C
and C++. Most notably, there are no pointers in Java. Java programs cannot

(at least in theory) access arbitrary addresses in memory.

Further, Java was to be cross-platform in source form, but also in

compiled binary form. Since this is impossible across processor architec-

tures, Java is compiled to an intermediate byte-code that is interpreted at run

time by the Java interpreter. Thus porting Java programs to a new platform

only needs a certified Java interpreter on the target platform.

In addition, Java has several features to make programming bugs less

common:

• Strong Typing

• There are no unsafe constructs

• The language is small so it’s easy to become fluent

• There are no undefined or architecture dependent constructs

• Java is object oriented so reuse is well-supported

1.2 Where did Java come from?

In the late 1970’s, Sun Microsystems’ founder Bill Joy thought about
doing a language that would merge the best features of MESA and C.
However, other projects intervened. He picked up the idea again in late 1990
and wrote a paper that outlined his pitch to Sun engineers that they should
produce an object environment based on C++.

68 The In-System Configuration Handbook

Around this time, James Gosling (who developed “emacs”) had been
working tor several months on an SGML editor called “Imagination” using
C++. Frustrated by the difficulties of using C++, he developed Oak as the

implementation language for “Imagination”. Oak later became Java.

Patrick Naughton started the Green Project in late 1990. The project was
defined as an ettort to “do fewer things better”. He recruited Gosling and
Mike Sheridan to help start the project. Joy showed them his paper, and
work began on graphics and user interface issues for several months in C.

In April of 1991, the Green Project (Naughton, Gosling and Sheridan)

settled on smart consumer electronics as the delivery platform, and Gosling

started working in earnest on Oak. Gosling wrote the original compiler in C.

Naughton, Gosling and Sheridan wrote the runtime-interpreter, also in C.

Oak was running its first programs in August of 1991. The first demos of

that system were given in the winter of 1 991

.

By the fall of 1992 “*7”, a cross between a PDA and a remote control,

was ready. Following a successful demonstration, the Green Project was set

up as First Person Inc., a wholly owned Sun subsidiary.

In early 1993, the Green team heard about a Time-Wamer request for

proposal for a set-top box operating system. First Person quickly shifted

focus from smart consumer electronics to the set-top box OS market, and

placed a bid with Time-Wamer.

They lost the bid and in the end the Time-Wamer project went nowhere.

First Person continued work on set-top boxes until early 1994, when it

concluded that like smart consumer electronics set-top boxes were more

hype than reality.

Without a market to be seen, First Person was rolled back into Sun in

1994. However, around this time it was realized that the requirements for

smart consumer electronics and set-top box software (small, platform

independent secure reliable code) were the same requirements for the

nascent web.

For a third time, the project was redirected, this time at the web. A
prototype browser called WebRunner was written. After more work, this

browser became HotJava.

Separated Configuration Algorithm and Data Specifications 69

1.3 Java and the World Wide Web

Java is, chiefly, a programming language. The original use of the Java

language (set-top boxes) needed security and the ability to execute code

from untrusted hosts. It turns out these are the same requirements for

allowing people to download and run programs from the Web. No other

language has the built-in security of Java. In addition, because web programs

can be downloaded on a multiplicity of platforms, cross-platform portability

is also paramount. The object-oriented nature of Java is secondary, and

mainly reflects the preferences and prejudices of the developers who set out

to write a secure language. The C-like syntax of the language is even less

crucial.

1.4 Java and In-System Configuration

Why use Java, a secure general purpose programming language with web
features, for configuration of PLDs?

The challenges associated with device configuration are near identical

with those associated with the specific strengths of Java.

Device configuration needs to be supported on a multiplicity of disparate

platforms. These platforms range from embedded systems to PCs and
workstations to Automatic Test Equipment. Great expense and effort

currently is squandered in porting configuration applications from platform
to platform. This is an error prone process and often results in a multiplicity

of files that need to be coordinated each time a system update or revision
occurs.

Device configuration is increasingly performed on devices contained in-

systems that are network-connected. The network connectivity is exploited
to case field upgrade of the systems. Specialized custom software often
needs to be developed to make the configuration application network
accessible. This too may need to be reproduced across platforms.

Device configuration is being designed into systems as an essential
portion of the systems functionality. The implication being, that during
system operation, devices are reconfigured to adapt to new data input. Also,
devices may be reconfigured to perform changed operations on data input to,
or as data is output from, the system. This means that being able to integrate
configuration software with that of the system - regardless of the platform or
specific system implementation - is a necessity.

70 The In-System Configuration Handbook

As configurable systems become networked, both the configuration

software and the configuration data must be secured. The configuration

software must do no harm to the system while running. The configuration

data must be able to be securely transferred from source to destination.

From a practical sense, it was determined that all this would be best

provided through existing technology that is well supported rather than one
that is developed from scratch. For these reasons, Java appeared perfect.

1.5 Development of Java API for Boundary-Scan

Learning from the lessons of SVF and then STAPL, the Java API for

Boundary-Scan (JAPIBS) was specified and built by a team of engineers at

Xilinx with input from boundary-scan tool manufacturers, ATE vendors and

a few other semiconductor manufacturers. The idea was to leverage the

power of Java to afford greater flexibility to both producers and consumers.

The Java language has been classified into 5 separate platforms of

broadening scope. They are as follows:

• Java Card

• K Java

• Embedded Java

• Personal Java

• Enterprise Java

Java Card is the version with the smallest footprint (about 32Kbytes). In

addition, Java Card is the only one of the platforms that constrains the

language to a specific subset (no floats, no integers).

K Java is smallest of the fully featured Java platforms. It supports all

language constructs but limits the system libraries available for use. The

footprint for K Java is approximately 200Kbytes and it is targets for

handheld devices like PDAs and communicators.

Embedded Java is the general Java solution for the embedded space. It

too supports all language constructs but allows designers to choose only the

libraries necessary for their application to function. This promotes

development on the smallest possible footprint virtual machine but with the

exact functionality needed.

Separated Configuration Algorithm and Data Specifications

Personal Java is the Java solution that targets the Internet appliance

market. This includes applications like Internet phones and remote data

entry terminals.

Enterprise Java is the version of Java that you can download free for use

on your PC or workstation. This includes all advertised functionality of all

the available java libraries and extensions.

To guarantee broad platform coverage, the language subset of Java used

for JAPIBS was constrained to that of Java Card. This meant that JAPIBS

would be able to work on the largest through to the smallest of all possible

platforms. This ranged from 8 bit microprocessor systems based on 8051s

and other similar machines, all the way through to standard PC and UNIX

workstation.

By making use of the object oriented powers of Java it is possible to

allow producers of JAPIBS applications the ability to provide customized

compression techniques that could be seamlessly integrated. This simply

involves supplying an object declared as an interface to define the data

access methods. A default implementation is provided, that can be

overridden by any particular application.

The data is accessed independent of the application through the data

access object and its associated methods. This allows the data to be

separated from the configuration algorithm. It also allows the data to be

stored in any arbitrary local or remote location and accessed as needed. By
using a fully functional programming language, specific configuration

applications can be easily customized by either the producer or the end user.

These customizations can include such functions as polling for configuration

data changes or having the configuration data changes themselves trigger

configuration updates.

Java applications built using JAPIBS are commonly referred to as

“scanlets”. This is a play on the Java term “applet” suggesting that a

JAPIBS application incorporates boundary-scan (or scan) operations.

1.6 Basic Java API for Boundary-Scan File Structure

An application developed based on the JAPIBS is built like any Java

application or applet. The key difference is, of course, that when boundary-

scan operations are needed, specific API calls are made. In this section, we
will examine the basic set of API calls. What you will immediately notice is

72 The In-System Configuration Handbook

the set of boundary-scan operations is universal so there will be some
likenesses between these API calls and the operations included in SVF and
STAPL.

1.6.1 The API Components

Given the operation of the IEEE STD 1 149.1 state machine the number
of operations supported by the API are simple and can be simply
enumerated. We present them with objects and associated methods to follow

the Java object oriented model.

Four basic classes and interfaces make up the Java API for Boundary-
Scan. These four classes are:

javaScanOperations - This class describes all basic boundary-scan

operations.

javaScanState - This class describes the 16 states of the TAP
controller state machine.

javaScanBitlf- This interface describes the method for accessing the

boundary-scan test or programming data.

javaScanHWIf - This interface describes the method for producing

the electrical signals to stimulate the TAP.

1.6.1. 1 The javaScanState Class

The javaScanState class describes the 16 states of the IEEE STD 1 149.1

Test Access Port Controller. It is used to mirror the state of the hardware

state machine. It includes defining constants for each of the 16 TAP
controller states as follows:

CAPTURE_DR - The CAPTURE_DR state

CAPTURE_IR - The CAPTURE_IR state

EXIT1_DR - The EXIT1_DR state

EXIT1_IR - The EXIT 1_IR state

EXIT2JDR - The EXIT2_DR state

EXIT2_IR - The EXIT2_IR state

PAUSE_DR - The PAUSE_DR state

PAUSE_IR - The PAUSE_IR state

RUN_TEST_IDLE - The RUN_TEST_IDLE state

SELECT_DR_SCAN - The SELECT_DR_SCAN state

SELECT_IR_SCAN - The SELECT_IR_SCAN state

SHIFT DR - The SHIFT DR state

Separated Configuration Algorithm and Data Specifications 73

SHIFTJR - The SHIFTJR state

TEST_LOGIC_RESET - The TEST_LOGIC_RESET state

UPDATE_DR - The UPDATE_DR state

UPDATE_IR - The UPDATE_IR state

In addition, a set of methods is available to set and retrieve the current

state.

getState() - The getState method returns the current TAP state.

setState(byte aState) - The setState method sets the current TAP
state to the state named by aState.

setState(javaScanState aState) - The setState method sets the

current TAP state to the state named by aState.

1.6. 1.2 The javaScanBitlf Interface Class

The javaScanBitlf interface class describes the interface methods for

accessing application specific data. It is the task of the scanlet developer to

provide an implementation of this interface. Completing this interface’s

methods must incorporate the needed data compression and decompression

algorithms.

The interface specification includes definition of standard bit positions

and data access methods.

BIT_0 - The BIT_0 constant provides a mask to identify the data at

bit position 0

B1T_1 - The BIT_1 constant provides a mask to identify the data at

bit position 1

BIT_2 - The BIT_2 constant provides a mask to identify the data at

bit position 2

BIT_3 - The BIT_3 constant provides a mask to identify the data at

bit position 3

BI r_4 - The BIT_4 constant provides a mask to identify the data at

bit position 4

BIT_5 - The BIT_5 constant provides a mask to identify the data at

bit position 5

BIT_6 - The BIT_6 constant provides a mask to identify the data at

bit position 6

BI r_7 - I he BIT_7 constant provides a mask to identify the data at

bit position 7

EQUALS - 1 he EQUALS constant is returned by the equalsQ method
when equivalence is true.

74 The In-System Configuration Handbook

NOT__’EQUALS - 1 he NOT_EQUALS constant is returned by the
equals() method when equivalence is false.

The set of methods includes several overloaded method calls. These
methods perform the same function but accept different data parameters.

clearQ - The clearQ method clears the underlying object data to all

zeroes.

copy(javaScanBitIf) - The copy method copies all the bits from the

javaScanBitlf value specified into the underlying application specific

data structure.

equals(byte) - This equals() method tests the equivalence of the

contents of the byte abyte with the underlying object.

getBit(int) - The getBit() method returns the logic value of bit stored

at position i.

getBitCount() - The getBitCount method returns the total number of

data bits represented in the underlying object.

getBits(int, int, byte[]) - This getBits method copies length bits to the

array of byte values specified in the theBits structure from the

underlying application specific data structure.

getByte(int) - The getByte method returns the byte of data stored at

byte position i

getByteCount() - The getByteCount method returns the total number
of data bits represented in the underlying object as a byte count.

getlnt(int, int) - The getlnt method returns (up to 32) length bits of

contiguous data from the underlying application specific data structure

as an int value.

setBit(int, byte) - The setBit() method sets the bit value specified by b

at bit position i.

setBitCount(int) - The setBitCount method sets the total number of

bits stored in the underlying object.

setBits(byte[J) - This setBits method copies an array of byte values

specified in the theBits structure to the underlying application specific

data structure.

1.6.1.3 The javaScanHWIf Interface Class

The javaScanHWIf describes the interface to boundary-scan hardware.

The scanlet wiggles the TAP pins to effect configuration of the device

though this interface. Because the interface will be hardware and platform

dependent, the implementation is up to either the scanlet developer or the

provider of the device communications hardware.

Separated Configuration Algorithm and Data Specifications 75

close(byte) - The close() method is used to end communications with

the boundary-scan hardware interface.

getTDOO - The getTDO() method returns the current sampled value

of the TDO pin.

open(byte) - The open() method is used to launch communications

with the boundary-scan hardware interface.

operateTAP(int, byte[], byte[J, byte[], byte[]) - The operateTAP

method is used to stream an arbitrary sequence of bits to the

boundary-scan hardware interface.

pulseTCK(int) - The pulseTCK() method is used to produce an

arbitrary number of zero-to-one transitions on the boundary-scan TCK
pin.

setTCK(byte) - The setTCK() method is used to drive the TCK
boundary-scan pin to any state.

setTCKFrequency(int) - The setTCKFrequency() method sets the

TCK operating frequency (if possible) to the specified frequency in

hertz.

setTDI(byte) - The setTDI() method is used to drive the TDI
boundary-scan pin to an arbitrary state.

setTMS(byte) - The setTMS() method is used to drive the TMS
boundary-scan pin to an arbitrary state.

setTRST(byte) - The setTRSTQ method is used to drive the optional

TRST boundary-scan pin.

waitState(int) - The waitStateQ method signals how long (in

microseconds) to pause.

1.6.1.4 The javaScanOperations Class

The javaScanOperations class defines all the basic boundary-scan
operations used by a device in defining either test or configuration
algorithms. 1 he functionality included is sufficient to allow a complete
description of state trajectories and transitions for either IEEE STD 1 149.1

boundary-scan test or IEEE STD 1532 configuration.

destroy(bvte) - The destroy method is called to terminate and clean
up resources allocated and used by the javaScanOperations object.

drEnd(byte) - The drEnd method specifies the state to which the TAP
controller state machine should transition following execution of any
drScan that completes in the EXIT! -DR state.

76 The In-System Configuration Handbook

drPostpend(javaScanBitIf) - The drPostpend method specifies those
bits that should be shifted in on TDI after those bits named in drScan
method calls.

drPrepend(javaScanBitIf) - The drPrepend method specifies those

bits that should be shifted in on TDI prior to those bits named in

drScan method calls.

drScan(javaScanBitIf, javaScanBitlf, byte, byte) - The drScan
method uses overloading to define various manners in which to drive

the TAP controller state machine to the SHIFT-DR state. The variety

ot different operations includes simply shifting data in, indicating

expected data to be shifted out, allowing shifting of blocks of data,

skipping transitions through Run Test Idle on completion. All of

these different operations are usable alone or in combination through

the power of overloading.

irEnd(byte) - The irEnd method specifies the state to which the TAP
controller state machine should transition following execution of any

irScan that completes in the EXIT1-IR state.

irPostpendfjavaScanBitlf) - The irPostpend method specifies those

bits that should be shifted in on TDI after those bits specified in irScan

method calls.

irPrepend(javaScanBitIf) - The irPrepend method specifies those

bits that should be shifted in on TDI before those bits specified in

irScan method calls.

irScan(javaScanBitIf, javaScanBitlf, byte, byte) - The irScan

method uses overloading to define various manners in which to drive

the TAP controller state machine to the SHIFT-DR state. The variety

of different operations includes simply shifting data in, indicating

expected data to be shifted out, allowing shifting of blocks of data,

skipping transitions through Run Test Idle on completion. All of

these different operations are usable alone, or in combination through

the power of overloading.

scanAsyncResetO - The scanAsyncReset method performs an

asynchronous TAP reset.

scanState(byte) - The scanState method transitions the TAP
controller state machine to the state indicated by the parameter.

scanSyncResetO - The scanSyncReset method performs a

synchronous TAP reset.

setTCKFrequency(int) - The setTCKFrequency method is used to

set the operating frequency of TCK.

waitTCK(int) - The waitTCK method specifies the number of TCK
pulses to execute.

Separated Configuration Algorithm and Data Specifications 77

waitTime(int) - The waitTime method specifies the time to idle in the

current TAP controller state machine state.

1.6.2 Data Compression

Typically, the programming or test data, if represented in ASCII, HEX or

BINARY can get overwhelmingly large. This is especially true if many

devices are being programmed or tested. The data producer, however, best

selects the compression algorithm used. Therefore, each data producer

would select a fitting technique for data compression that provides best

results for their variety of data. By not enforcing an algorithm that favors

one style of data over another, you can avoid equally suboptimal results for

all data. Each Java scanlet, though, must provide its own decompression

algorithm.

To allow the wide variety of algorithms, the javaScanBitlf interface and

its associated methods standardize data access techniques.

1.6.3 Java Native Interface Requirements

Eventually the TAP operations described by the javaScanOperations
class needs to be applied to the system as electrical stimuli. The application

port might be a group of processor pins in an embedded processor, a PC
parallel port, a workstation serial port, a computer USB or FireWire port or a

custom hardware proprietary port.

1 he classic manner to interface to a wide variety of disparate devices is

to define a standard device interface and then supply suitable drivers for

each device. In Java, this is best set up as a Java Native Interface (JNI).

Having such a JNI-based API allows users full algorithmic portability.

I hose who run on an embedded processor use pins of the microprocessor to

produce the TAP signals. If the scanlet is executed on a PC then a cable
connected to the parallel port may be used to produce the TAP signals. Then
again, if the scanlet is executed on automatic test equipment some complex
proprietary hardware may be driving the TAP pins. All of these native calls

are encapsulated in an object called the javaScanll WIf.

1.7 Java API for Boundary-Scan File Example

A simple example can help understanding the use of the Java API for
Boundary-Scan. In addition, because this example is Java, some familiarity
with algorithmic control flow languages will be helpful.

78 The In-System Configuration Handbook

The sample code we will study, is a single JAPIBS application that can
configure any device from the Xilinx XC9500 CPLD family. With some
minor changes, you can invoke this single application from with a browser
as an apple. You could also integrate it into a larger application to perform

configuration as needed.

The application is just a regular Java application. In fact, the first section

ot the application is unsurprising. It is standard program fare: variables are

initialized, input is validated and methods are called. When we examine the

contents of the configuration methods you will see the functionality of the

JAPIBS. Even then, though, it is still just a Java application. This

ordinariness is what makes the JAPIBS so powerful. If you can write a Java

application, you can reuse the algorithmic objects for any device and build

your own custom configuration infrastructure.

The application begins with a listing of the included Java libraries. In

this case, the libraries included allow 10 operations. The application targets

a fuller JVM of the embedded Java family or higher.

importjava.io.InputStream;

importjava. io.FileNotFoundException;

importjava.io.IOException;

importjava. io.FileOutputStream;

importjava.Iang.Integer

;

The JAPIBS libraries are included to give access to the boundary-scan

functionality needed to configure the devices.

import com.scan.javaScanOperations;

import com.scan.javaScanHWIf;

import com. scan.javaScanBitlf;

import com.scan.javaScanState;

The device-specific data libraries are included to allow the application to

interpret the configuration data properly. In this case, the application

supports data compression using Huffman encoding. As previously pointed

out, the data interpretation implementation is defined to suit the target

device. Some devices may opt for no compression, others may choose

proprietary techniques.

import com.xilinx. compression. huffmanStream

;

Separated Configuration Algorithm and Data Specifications 7>

import com.xilinx. utilities. universallO;

import xilinxCpldBits;

Every Java application is encapsulated in a class. In this case, the class is

named xc9500cls. Other devices that use identical configuration algorithms

can derive from this class and reuse what exists.

public class xc9500cls

{

It is useful to keep track of the algorithm version set up in this class.

staticfinal byte VERSION = 4;

You must instantiate the basic JAPIBS class to get access to the

boundary-scan operations.

private staticjavaScanOperationsjavaScanObj;

Then, all the local variables needed to carry out the configuration

algorithm need to be defined and initialized. These include instructions for

all the device operations.

private static xilinxCpldBits idcode ;

private static xilinxCpldBits bulk ;

private static xilinxCpldBits iscenable ;

private static xilinxCpldBits program ;

private static xilinxCpldBits verify ;

private static xilinxCpldBits bypass ;

Good algorithm practice includes testing the instruction register capture

bits and the IDCODE value with each operation. The actual and expected

values are stored in these variables.

private static xilinxCpldBits IRcapture;

private static xilinxCpldBits IRcaptured;

private static xilinxCpldBits devicelDInput;

private static xilinxCpldBits devicelDOutput;

Since this application will be used for all devices in the family, the

IDCODE value for each family member needs to be known.

80 The In-System Configuration Handbook

private static xilinxCpldBits xc9536DeviceID;
private static xilinxCpldBits xc9572DeviceID

;

private static xilinxCpldBits xc95108DeviceID;
private static xilinxCpldBits xc95l44DeviceID;
private static xilinxCpldBits xc952I6DeviceID;
private static xilinxCpldBits xc95288DeviceID

;

private static xilinxCpldBits thisDevicelD;

The device included a series of configuration registers to load data. The
registers also capture information that is needed for the algorithm flow. In

this section, we define the registers conceptually as input and output

registers. Since the XC9500 family has a non-deterministic programming
algorithm, some operations may need to be retries to complete successfully.

A separate register is defined to store the data to be reapplied to the device.

That is the retryRegister.

private static xilinxCpldBits iscRegister;

private static xilinxCpldBits ispVRegister;

private static xilinxCpldBits configurationRegister;

private static xilinxCpldBits resultRegister;

private static xilinxCpldBits retryRegister;

The TAP state is stored and tracked in the scanState object. This is

intialized here.

private staticjavaScanState scanState;

Finally, the input file access object is defined here. This allows you to

read the configuration data supplied in a separate file. The application

accepts either compressed or uncompressed configuration data.

private static InputStream inputDatal

;

private static InputStream inputData;

The program main defines all the functionality deliverable by this

application. The main will read the command line and decide from the

arguments provided what the user wants to do. In this simple application,

the user can select to erase, program or verify the device. In addition, as

pointed out previously, configuration data in normal or compressed format is

provided.

Separated Configuration Algorithm and Data Specifications 81

public static void main(String args[])

{

byte eraseFlag = 0, programFlag = 0, verifyFlag = 0;

Using good practice, the application displays usage information if

the arguments seem wrong.

if (args. length < 2) {

System, out.printf'Usage; xc9500cls [-erase\-program\-

verify] <data file>\n");

System. exit(-l);

}

The program parses the arguments to decide what to do based on the

flags supplied.

for (int i = 0; i < args. length; i++) {

if (args[ij.equalsIgnoreCasef'-erase”)) {

eraseFlag = 1 ;

} else {

if(argsfi].equalsIgnoreCasef-program ")) {

programFlag = 1;

} else {

if (args[i].equalslgnoreCasef-verify
n
)) {

verifyFlag =1;

} else {

dataFile = argsfi]

;

}

}

}

>

Now open the data file to allow access to its contents. If the file is not
found, an error message is printed and the applications stops.

try {

//Create an inputStream to handle both urls and files,

universalIO x = new universal/O(dataFile);

iffdataFile. ends WithC.pack ")){

inputData I = x. getInputStream ()

;

inputData = new huffmanStream(inputDatal);

82

}

else

The In-System Configuration Handbook

inputData = x.getlnputStreamQ;

} catch (FileNotFoundException e) {

System.out.printC'File notfound!\n");
System, exit(-l);

}

After finding out there is something useful to do, initialize the support

data and perform the correct operations. The initialize method sets up all the

data you need to run the algorithm. It also does some simple tests to make
certain the boundary-scan connections are correct and the expected device is

present.

System, out.printingInitializing device... ");

byte device = xc9500cls.initialize(inputData);

if(device == (byte) -I) {

System.out.printflnitialization error!\n ");

xc9500cls. terminate^);

System, exit(-l);

}

If the ’’-erase" flag was set then erase the device.

if(eraseFlag != 0) {

System. out.print

(

nErasing device ”);

xc9500cls.erase(device);

System, out.printing. . . done ");

}

If the ’’-program" flag was set then program the device.

if(programFlag /= 0) {

System. out.print(”Programming device ');

xc9500cls.program(inputData);

System, out.printlnf. . . done. ’);

}

Close the configuration data file since programming is complete.

try {

inputData. closeQ;

Separated Configuration Algorithm and Data Specifications 83

} catch (IOException e) {

System. out.printQFile closefailed!\n
f

);

xc9500cls. terminate();

System, exit(-l);

}

If the "-verify" flag was set then reopen the configuration data file to get

back to the beginning of the file. Then call the verify method.

if (verifyFlag /= 0) {

try {

universallO y = new universallO(dataFile);

ifargsfdataFile.ends With(
n
.pack')){

inputDatal - y.getlnputStreamQ;

inputData = new huffmanStream(inputDatal);

}

else

inputData = y.getlnputStreamQ;

} catch (FileNotFoundException e) {

System, out.print('File notfound!\n ");

xc9500cls. terminateQ;

System. exit(-l);

}

System, out.print(" Verifying device ’);

if (xc9500cls. verify(inputData) != 0) {
System. out.println(”... Verify errors idenitified!

9

);

xc9500cls. terminateQ;

System. exitQl);

}

System, out.printing. . . done. ”);

When done, close the data stream and exit.

try {

inputData.closeQ;

} catch (IOException e) {

System. out.printQFile closefailed!\n ");

xc9500cls. terminateQ;

System. exitQl);

}

}

84 The In-System Configuration Handbook

xc9500cls. terminate();

}

System. exit(0);

}

This completes the main application block. As suggested previously, it

looks like a normal Java application - because it is. With the next object

methods, we will begin to see use of the JAPIBS to provide TAP access and
control.

We begin with the initialize method. This method initializes all objects

with their value for use within the algorithmic methods. This includes

defining the bit patters of the in-system configuration instructions, the

expected device IDCODE values and the various data registers to be used

during algorithm execution.

public static byte initialize(InputStream input) {

The basic JAPIBS class javaScanObj gives access to all the TAP
operations. This is instantiated in this method for use throughout.

javaScanObj = newjavaScanOperations();

The device's basic ISC instruction patterns are initialized here. A more
sophisticated application could read these from the device's BSDL file. Here

they are hard-coded.

iscenable = new xilinxCpldBits((byte) 0xe8);

iscdisable = new xilinxCpldBits((byte) OxfO);

bypass = new xilinxCpldBits((byte) Oxff);

The expected instruction register capture value and a variable to store the

value read from the device are initialized here. As with the ISC instructions,

a more sophisticated application could read this information from the

device's BSDL file.

IRcapture = new xilinxCpldBits((byte) 0x01);

IRcaptured = new xilinxCpldBits((byte) 0x00);

Separated Configuration Algorithm and Data Specifications oj

The IDCODE values for each member of the family are set. As with the

instruction pattern information, a more sophisticated application could read

this information from all the devices' BSDL files.

xc9536DeviceID = new xilinxCpldBits((int) 0x09502093);

xc9572DeviceID = new xilinxCpldBits((int) 0x09504093);

xc95108DeviceID = new xilinxCpldBits((int) 0x09506093);

xc95144DeviceID = new xilinxCpldBits((int) 0x09508093);

xc952J6DeviceID = new xilinxCpldBits((int) 0x09512093);

xc95288DeviceID = new xilinxCpldBits((int) 0x09516093);

The device's data registers are sized and initialized.

configurationRegister = new xilinxCpldBits((int) 0x0, 27);

resultRegister = new xilinxCpldBits((int) 0x0, 27);

retryRegister = new xilinxCpldBits((int) 0x0, 27);

The TAP state is initialized and the end-of-shift transition state is set for

both Shift IR and Shift DR. In both cases, the state is set to Run Test/Idle.

scanState = newjavaScanStateQ;

javaScanObj.irEnd(javaScanState.RUN_TEST_IDLE);

javaScanObj.drEnd(javaScanState.RUN_TEST_1DLE);

And now, finally, some TAP operations. The algorithm begins with a

synchronous transition to l est Logic Reset. The TAP controller is instructed

to hold I MS high for five TCK pulses. Once in l est Logic Reset, the TAP
controller is directed to transition to Run Test/Idle.

javaScanObj.scanSyncResetQ;

javaScanObj. scanStatefjavaScanState.RUN_TESTJDLE);

Once in Run Test/Idle, shift in the BYPASS instruction and look at the

bits shifted out of the device as stored in the IRcaptured variable. Then test

and see if what was returned from the device equals the expected value as

stored in IRcapture. If the returned value differs from the expected value

then exit the operation with an error status.

javaScanObj. irScanf bypass, IRcaptured);

if (IRcaptured. equals! IRcapture) /= 0) {

°° The In-System Configuration Handbook

System. out.print(
n
Boundary-scan shift path has open

connections. \n ");

return((byte) -1);

}

In this case, the programming data file has the target device stored in its

first four bytes. By reading out this data, the application knows what device
it should be talking to and can test to make certain that it is the case. In

addition, tor this family, certain device-specific data must be loaded at

configuration time. This value is loaded as part of configuration algorithm

initialization.

int bytes = 0;

byte data[] = new byte[4];

try {

bytes = inputData.read(data);

} catch (IOException e) {

System. out.print("IO Error!\n ");

}

byte device = data[0];

switch (device) {

case 4:

iscRegister = new xilinxCpldBits((byte) OxOf 6);

ispVRegister = new xilinxCpldBits((byte) 0x07, 6);

thisDevicelD = xc9536DeviceID;

break;

case 8:

iscRegister = new xilinxCpldBits((byte) 0x3f 8);

ispVRegister = new xilinxCpldBits((byte) OxIf 8);

thisDevicelD = xc9572DeviceID;

break;

case 12:

iscRegister = new xilinxCpldBits(OxOff, 10);

ispVRegister = new xi!inxCpIdBits(0x07f 10);

thisDevicelD — xc95 1 OSDevicelD;

break;

case 16:

iscRegister = new xiIinxCpldBits(0x3ff, 12);

ispVRegister = new xilinxCpldBits(Ox Iff, 12);

thisDevicelD = xc95144DeviceID;

break;

Separated Configuration Algorithm and Data Specifications 87

case 24:

iscRegister = new xilinxCpldBits(0x3ffft 16);

ispVRegister = new xilinxCpldBits(Oxljff 16);

thisDevicelD = xc952 1 6DeviceID;

break;

case 32:

iscRegister = new xilinxCpldBits(0x3ffff, 20);

ispVRegister = new xilinxCpldBits(Oxlffff, 20);

thisDevicelD = xc95288DeviceID;

break;

default:

return((byte) -1);

}

The IDCODE value is then read out of the device and compared against

the expected value.

devicelDOutput = getlDCODE();

if (devicelDOutput. equals(thisDevicelD , 27)!= 0) {

System. out.printfDevice ID checkfailedW);

return((byte) -1);

}

return(device);

}

That is the end of the initialize method. It returns a coded value of the

device for use in the algorithmic steps that follow.

The getIDCODE method loads the IDCODE instruction and reads the

device's IDCODE value and returns the value read from the device to the

calling program.

public static xilinxCpldBits getIDCODE() {

I he IDCODE instruction bit pattern is defined. Then a sequence of ones

is defined to shift into the device to get the IDCODE value out. Finally, a

variable is defined to hold the device's IDCODE value (devicelD).

idcodc = new xilinxCpldBits) (byte) Oxfe);

deviccIDInput = new xilinxCpldBits) (int) Oxffffffff);

xilinxCpldBits devicelD = new xilinxCpldBits) (int) Oxffffffff);

°° The In-System Configuration Handbook

The steps in reading the IDCODE involve, first shifting in the IDCODE
instruction...

javaScanObj.irScan(idcode);

...then shifting in the sequence of ones to shift out the device's IDCODE
value...

javaScanObj.drScan(devicelDInput, devicelD);

. . .which is returned to the calling program for further processing.

return(devicelD);

}

The next method defines the erase algorithm.

public static void erase(byte device) {

The wait time associated with the erase operation is defined as 1 ,300,000

microseconds.

int wait_time = 1300000;

The erase instruction bit pattern is defined here. As suggested

previously, a more sophisticated application could read this information

from the device's BSDL file.

bulk = new xilinxCpldBits((byte) Oxed);

Now we begin execution of the erase algorithm. First the ISC_ENABLE
instruction is loaded to put the device in in-system configuration mode.

Then the associated data register value as defined by iscRegister is shifted

in.

javaScanObj. irScan(iscenable);

javaScanObj. drScan(iscRegister);

Then the variables used to store the input values and the values shifted

out of the device are cleared.

configurationRegister.clear0;

Separated Configuration Algorithm and Data Specifications 89

resultRegister. clear();

Now we shift in the erase instruction (named bulk). Then the data to be

shifted in is defined as required by the algorithm. The data bits 0 and 1

define the incoming status that signals valid data is shifted in. Data bits 5

through 21 are the sector address which is zero. Data bits 2 through 7 are

don't care bits for erase and are set to all ones. The data is then shifted into

the device. Since the end state of the TAP is defined to be Run Test/Idle, the

specified wait is performed in that state, as needed.

javaScanObj.irScan(bulk);

configurationRegister.setBits(0, 2
,
(byte) 0x2);

configurationRegister.setBits(22, 5, (byte) 0x0);

configurationRegister. setBits(2, 8, (byte) Oxff);

javaScanObj. drScan(configurationRegister);

javaScanObj.waitTime(wait_time);

This device has a non-deterministic configuration algorithm. The device

responds with a status that signals if an extra try is needed to complete the

operation. In addition, the next sector address is used to shift out the result

data. This involves setting the input data register bits 5 through 21 to 1

.

configurationRegister.setBits(22, 5, (byte) Oxl);

xilinxCpldBits repeat = new xilinxCpldBits((byte) 0x3, 2);

javaScanObj.drScan(configurationRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

The status bits that signal if extra tries are needed are stored in the repeat

variable. If the value is 3 then the operation completed successfully.

Otherwise, another try is needed.

while(repeat, equalsf (byte) 0x3) /= 0) {

javaScanObj. waitTime(waitjtime);

resultRegister. setBits(0, 2, (byte) 0x2);

javaScanObj.drScan(resultRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

}

I he erase algorithm requires addressing two distinct spaces in the device.
In this phase, the second sector is erased using a method identical with that

of the first sector. The only difference is the sector address changes (to 1 , as
previously set).

90 The In-System Configuration Handbook

javaScanObj.drScan(configurationRegister);

javaScanObj. waitTime(wait_time);

javaScanObj.drScan(configurationRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

whi!e(repeat. equals((byte) 0x3) /= 0) {

javaScanObj. waitTime(wait_time);

resultRegister. setBits(0, 2, (byte) 0x2);

javaScanObj.drScan(resultRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

}

The final operation is to leave in-system configuration mode by loading

the ISC_DISABLE instruction

javaScanObj. irScan(iscdisable);

}

The next method defines the programming algorithm. It is identical with

the erase algorithm in flow. The program instruction is loaded, the program

data is shifted in, the operation completes in the Run Test/Idle state, the

device status is tested and extra tries are carried out as needed.

1

public static byte program(InputStream inputData) {

int bytes = 0;

byte error;

byte data[] = new byte[4]

;

The program instruction bit pattern is defined here. As pointed out

previously, a more sophisticated application could read this information

from the device’s BSDL file.

program = new xilinxCpldBits((byte) Oxea);

Now we begin execution of the program algorithm. First the

ISCJENABLE instruction is loaded to put the device in in-system

configuration mode. Then the associated data register value as defined by

iscRegister is shifted in.

javaScanObj. irScan(iscenable);

javaScanObj. drScan(iscRegister);

Separated Configuration Algorithm and Data Specifications

Now we shift in the program instruction (named program). Then the data

to be shifted in is read from the input data file. The data bits 0 and 1 define

the incoming status that signals valid data is shifted in. Data bits 2 through

24 are the address and configuration data as read from the file. The data is

then shifted into the device. Since the end state of the TAP is defined to be

Run Test/Idle, the specified wait is completed in that state, as needed.

javaScanObj. irScan(program);

xilinxCpldBits repeat = new xilinxCpldBits((byte) 0x3, 2);

The try operation is used in Java to trap 10 errors when reading files. If a

file access fails then the code associated with the catch operation below is

carried out.

try {

The first time through the operation, no data needs to be shifted out. The

first variable says if this is the first time or not.

bytefirst = 1;

Read four bytes of data from the configuration data file.

while((bytes = inputData.read(data))
!= -1) {

Clear the contents of the variable used to store the data to be shifted into

the device (configurationRegister).

configurationRegister.clearQ;

The data bits 0 and 1 define the incoming status that signals valid data is

shifted in. Data bits 2 through 24 are the configuration address and data.

This is the information read from the configuration data file. The stored data

is then shifted into the device. Since the end state of the TAP is defined to

be Run Test/Idle, the specified wait is completed in that state, as needed.

configurationRegister. setBits(0, 2, (byte) 0x2);

configurationRegister. setBitsf 2, 25, data);

javaScanObj. drScan(configurationRegister, resultRegister);

javaScanObj. waitTimef 640);

92 The In-System Configuration Handbook

It this is the first time through then the status will not be checked.
Otherwise, the device status is available in the resultRegister variable.

if (first == 0) {

The device status is collected in the repeat variable.

resultRegister.getBits(0, 2, repeat);

If the status is equal to 3 then the program operation completed

successfully. Otherwise, the operation needs to be repeated for the address

and data just shifted in.

while(repeat. equals((byte) 0x3) != 0) {

javaScanObj.drScan(retryRegister);

The wait time for the program operation is 640 microseconds. As with

the erase, it completes in Run Test/Idle. Since the end state of the drScan is

Run Test/Idle, the TAP is already in that state.

javaScanObj. waitTime(640);

javaScanObj. drScan(retryRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

}

Since we have completed the first pass through the algorithm, we set the

first flag to zero.

first = 0;

}

Just in case a retry needs to be done, save the data to shifted in again in

the retryRegister variable.

retryRegister, copy(configurationRegister);

}

} catch (IOException e) {

System, out.printfTO Error!\n ');

}

When you reach the last address to be configured, the

configurationRegister variable contains that final data. Shift in the value to

Separated Configuration Algorithm and Data Specifications 93

be configured and collect the result of the previous program operation in

resultRegister. Get the status bits in the repeat variable and test if the return

status is 3.

javaScanObj.drScan(configurationRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

while(repeat, equals((byte) 0x3) /= 0) {

If the return status did not signal success, the retry value is already

loaded so you only need to wait in Run Test/Idle for the program operation

to complete. Then shift in the value again and test the status until you read

success status.

javaScanObj. waitTime(640);

javaScanObj.drScan(configurationRegister, resultRegister);

resultRegister.getBits(0, 2, repeat);

}

After the final address is programmed, load the ISC_DISABLE
instruction to exit ISC mode.

javaScanObj. irScan(iscdisable);

return(O);

}

The next method describes the device configuration verification

algorithm. I his algorithm flow is identical with the program method but

does not need wait times in Run Test/Idle or retries since the read operation

is deterministic.

public static byte verify(InputStream inputData) {

int bytes = 0;

byte dataf] = new byte[4]

;

byte actualData = 0x0, expectedData = 0x0;

I he verify instruction bit pattern is defined here. As suggested
previously, a more sophisticated application could read this information
from the device’s BSDL file.

verify = new xilinxCpldBitsf (byte) Oxee);

94 The In-System Configuration Handbook

The first four bytes of the configuration data file are the device
information. Since that data is not used as part of the verify operation it is

read and discarded.

try {

bytes = inputData.readj data);

} catch (IOException e) {

System. out.print("IO Error!\n ");

}

Now we begin execution of the program algorithm. First the

ISC_ENABLE instruction is loaded to put the device in in-system

configuration mode. Then the associated data register value as defined by
iscVRegister is shifted in.

javaScanObj,irScan(iscenable);

javaScanObj.drScan(isp VRegister);

Now we shift in the verify instruction (named verify). Then the data to

be shifted in is read from the input data file. The data bits 0 and 1 define the

incoming status that signals valid data is shifted in. Data bits 2 through 24

are the address and configuration data as read from the file. The only

information read by the device is the address. Having the data will be useful

to compare against what was returned from the device. The data read is then

shifted into the device.

javaScanObj.irScan(verify);

try {

As with the program algorithm, the first time through, no data can be

shifted out. The first shift sets the address from which to read and only after

it is completed can valid data be read out of the device. The first variable

tells if this is the first time or not.

bytefirst = I;

while((bytes = inputData.read(data)) /= -1) {

Clear the contents of the variable used to store the data to be shifted into

the device (configurationRegister).

configurationRegister. clear();

Separated Configuration Algorithm and Data Specifications 95

The data bits 0 and 1 define the incoming status that signals valid data is

shifted in. Data bits 2 through 24 are the configuration address and data.

This is the information read from the configuration data file. This stored

data is then shifted into the device.

configurationRegister.setBits(0, 2, (byte) 0x2);

configurationRegister.setBits(2, 25, data);

javaScanObj.drScan(configurationRegister, resultRegister);

If this is not the first time the data read from the resultRegister will be

valid. The bits 2 through 7 are the configuration data read from the device.

These are compared against the expected value. If they differ, an error is

signaled and the method exits.

if (first == 0) {

actualData = resultRegister.getByte(2, 8);

if(actualData != expectedData) {

System. out.printing Verification error”);

return(-l);

}

} else {

If it is the first time through do nothing but set the flag to indicate the

first time has been completed.

first = 0;

}

Set up the expected data by reading the bits 2 through 7 from the

configurationRegister variable.

expectedData = configurationRegister.getByte(2, 8);

}

} catch (IOException e) {

System. out.print(”lO Error!\n ”);

}

Read out and check the value of the last configuration word.

javaScanObj.drScan(configurationRegister, resultRegister);

actualData = resultRegister.getByte(2, 8);

if(actualData /= expectedData) {

96 The In-System Configuration Handbook

System. out.println(
n
Verification error”);

return(-l);

}

After the final address is read, load the ISCJDISABLE instruction to exit

ISC mode.

javaScanObj.irScan(iscdisable);

return(O);

}

The terminate method loads the ISC_DISABLE instruction to exit ISC
mode and then loads the BYPASS instruction to complete the transition out

ot ISC mode and enable the programmed function of the device.

public static void terminate() {

javaScanObj. irScan(iscdisable);

javaScanObj. irScanj bypass);

System. out.print(”Completed. . . \n ");

}

}

If you are used to application programming then the JAPIBS merely

provides a set of building blocks with which to develop boundary-scan

applications of any sort. It has many functions that make it well suited to

configuration algorithm description.

The JAPIBS application can be as simple or complex as needed. The

sample application, for instance, supports only single device chains. An
adapted version of the initialize method could be developed to supply any

pre- and post-padding if instruction and data register bits to support the

XC9500 devices in an arbitrarily long boundary-scan chain.

A sophisticated systems designer has the freedom to build her own
boundary-scan applications and integrate them into the broader system

application. Less demanding designers can use JAPIBS-based applications

as building blocks for simple device configuration applications.

Separated Configuration Algorithm and Data Specifications 97

1.8 Using the Java API for Boundary-Scan

By building on the experience of SVF and STAPL and basing the

approach on an existing programming language, JAPIBS provides a more

complete system solution. It leverages Java's adaptability, portability and

integrability to ease incorporation of configuration to your system software

solution. In addition, through use of Java’s extension networking and

security libraries, it is straightforward to deploy your configuration

functionality on the Internet securely.

Separating configuration data from the algorithm makes updating either

the algorithm or the data independently much simpler.

The target platforms are those for which a Java Virtual Machine (JVM) is

available. As with SVF, a key need was developing a format easily produced

by test software that was usable on a multiplicity of test platforms. Care

must be taken when developing JAPIBS scanlets to ensure the Java libraries

used are supported across the space of JVMs targeted. For instance, if you
are targeting the Java Card JVM then you will not be able to use the Java

networking libraries. If however, you are targeting Embedded Java and

Enterprise Java you will be able to use these libraries.

Identifying a JVM for your platform of choice may be a challenge.

JVMs are widely available for Windows, Solaris and Linux. The availability

of JVMs for embedded systems, however, is more limited. Major RTOS
manufacturers do supply JVMs as add-ons to their RTOSs. If, however, you
develop your own embedded system infrastructure, you will have to find

your own JVM and customize it for your system. While open source JVMs
exist (like Japhar), the effort in customizing it may be significant. The value
of the customization effort of JVM will be increased if the configuration

functionality is essential to system operation.

The vendor software produces a basic scanlet but it will typically assume
a Ja\a (ard JVM and constrain its operations to the most portable language
and library subset. This suggests that JAPIBS scanlets may need to be
customized by the system designer to achieve the functionality required.
Added functionality, however, will limit the global portability.

Because different scanlets may use different data access and compression
algorithms, the system designer needs to make certain the needed interface
implementations (provided by the vendor) are included in the run time
environment.

98 The In-System Configuration Handbook

The system designer has a fair amount of responsibility in building a
system to support a scanlet. The good news though is the responsibility is

identieal with that of installing Java in the chosen run time environment. If

the system already uses Java then the effort is slight. If the system does not

use Java then the mechanisms are well documented with a rich variety of
tutorial and expert knowledge. In the end, this effort is similar to other

approaches but the solutions are already available unlike SVF or STAPL in

which the onus is on the system designer to discover the correct approach.

Chapter 7

CONFIGURATION SPECIFICATION AND
DESCRIPTION LANGUAGES
IEEE Standard 1532

1. IEEE STD 1532 BSDL

In 1996, there was a series of informal industry discussions about the

Babel-like status of in-system configurable devices and languages. This led

to the organization, by Agilent (then still part of Hewlett Packard) and

Xilinx, of a programmable logic summit to explore the possible

standardization of both the configuration behavior of programmable devices

and their description.

What was clear from the start was most devices were using the basic

communication protocol and associated state machine of IEEE STD 1 149.1.

(IEEE STD 1 149.1 is also known as JTAG or boundary-scan, but experts in

the field will be quick to tell you that these common synonyms are subtly

different from IEEE STD 1149.1). The end user community demanding

simultaneous support of in-system configuration and boundary-scan

interconnect test drove this. Since IEEE STD 1 149.1 was designed to allow

for arbitrary extension of the instruction set to support other test or non test-

related operations, as needed, it made sense to attach configuration

functionality onto the IEEE STD 1 149.1 infrastructure.

After the summit meeting, there was broad general agreement to continue

toward standardization. There was agreement that leveraging the existing

IEEE STD 1149.1 infrastructure and knowledge base would benefit in-

system configuration device, tool, system and application development. In

addition, such standardization also promised the possibility of multi-vendor

concurrent programming. This would allow end users to choose pro-

grammable devices according to their design needs and still be able to

minimize system configuration time, by increasing overall throughput ot

IEEE Standard 1532 101

systems in manufacturing. We will examine the benefits of concurrent

programming in a later section.

After a prolonged and thorough definition process, the decision was that

standardization process needed agreement on two separate but related

elements. The first was to define a standardized hardware behavior. That is,

devices that would claim to adhere to the standard would be needed to

follow strict rules governing the externally observable behavior of the device

before, during and after configuration. In addition, a set of rules would

govern the device’s use of the IEEE STD 1 149.1 TAP states restricting what

can be done in each state and what state trajectories should be allowed and

used. We will deal more with the specific hardware rules and behaviors in a

later section.

The second point of agreement was that to promote use of IEEE STD
1532 compliant devices, some algorithmic description would be needed.

Once again, by turning to the IEEE STD 1149.1 infrastructure, it was
decided that Boundary-Scan Description Language (BSDL) would be the

best method to describe the necessary operations. BSDL already had the

idea of extension in place. A BSDL extension is a construct for adding

application-specific information to a BSDL file. BSDL parsers that don’t

understand the contents of the extension skip over it. BSDL parsers that do
understand the extension, parse and interpret it.

1.1 Basic IEEE STD 1532 BSDL File Structure

BSDL is a subset of VHDL (IEEE STD 1076-1993). However, BSDL is

not necessarily 100% VHDL compliant. You cannot (nor should you have
the need to) execute a BSDL description as a standard VHDL file. The user
should be aware that some modification of BSDL files may be needed
should they be used as input to VHDL-based tools. No way has been found
of avoiding this small amount of effort without introducing further

undesirable complications. Specifically, the BSDL use statement may need
editing because of tool and file system dependencies. Syntax of the
statements, as defined, is legal VHDL; however, an added prefix (identifying
a library in which the Standard VHDL Package will be found) must be
added for some applications. A syntax lacking such a prefix has been chosen
to force an error in such an application rather than risk unpredictable and
confusing errors because of including an inappropriate prefix.

It should also be noted that BSDL does not employ all the syntactic
elements of VHDL. Only those elements needed to meet the scope of BSDL

102 The In-System Configuration Handbook

are used. Sometimes, only a subset ot a particular VHDL language element
syntax is used in BSDL.

Further, tor cases in which a feature could be described in several ways
within VHDL, a restricted set of ways has been selected and defined exactly

as the standard practice for BSDL. This restriction simplifies the application

of the VHDL subset for BSDL, particularly for tools that are only required to

read or produce BSDL (that is, tools that have no requirement to read or

write the full VHDL language).

In addition, BSDL imposes extra requirements on the syntax and content

of certain character strings— that is, sequences of characters between

quotation marks (for example, “EXTEST”). A VHDL parser will not check

the information in these strings. In contrast, a BSDL parser shall check that

the information in the strings is suitable for the relevant parameters or

attributes for which such strings might be values.

Most of the BSDL file is devoted to describing IEEE STD 1 149.1 bound-

ary-scan capabilities of a device. This is well described in both IEEE STD
1149.1 and other textbooks on the matter. Therefore, details on the test

sections will not be covered here. Instead we will focus on the sections of a

standard BSDL file relevant to IEEE STD 1532 and on the IEEE STD 1532

BSDL extension.

1.1.1 IEEE STD 1149.1 BSDL Attributes

Because IEEE STD 1532 is built on the foundation of IEEE STD 1 149.1,

they share the same basic BSDL. IEEE STD 1532 does however, make

certain IEEE STD 1149.1 optional attributes compulsory. This was

mandated owing the utility of these functions to the needs of in-system

configuration-based applications.

The two such attributes mandated are IDCODE_REGISTER and

USERCODE_REGISTER. Since both the IDCODE and USERCODE
instructions are mandated by IEEE STD 1532 (rather than being optional as

in IEEE STD 1149.1) these attributes, that show the resultant data values

associated with these instructions, must be specified.

The IDCODE instruction allows electrical identification of the devices

on the boundary-scan chain. The USERCODE instruction allows electrical

identification of the programmed contents of the devices. These two

instructions together allow complete identification of the connected system.

IEEE Standard 1532 103

This can promote remote field update when physical access to identify the

system contents visually is not possible.

Sample specifications of these attributes follow below:

attribute IDCODE_REGISTER of A_Device: entity is

”001 1” & -- Version

”1 1 11001011010000” & -- Part number

”00 1 0 1 0 1 0 1 0 1” & -- Identity of the manufacturer

”
1

- Required by IEEE STD 1 1 49. 1 - 1 990

for IDCODE_REGISTER. This represents the value shifted out when in

Shift_DR and the IDCODE instruction is active.

The example below:

attribute USERCODE_REGISTER of A_Device: entity is

"10XX00001 10011 11” & -Start I

s
' 32-bit pattern

”000000000000 1X11 ,”& - End 1

s
' 32-bit pattern

"XXXX0000 10011 000” & - Start 2
nd

32-bit pattern

”0000 111110011 000”; - End 2
nd

32-bit pattern

for USERC0DE_REG1STER represents the value shifted out when in

Shift_DR and the USERCODE instruction is active.

1.1.2 The ISC_Pin_Behavior Attribute

There are two choices for system 10 pin behavior while the device is

being configured. Either the pins can float or they can be clamped and held

specific user preloaded values. This attribute is made available to show to

the controlling software (and the end user) which behavior is supported by

this device.

Samples of this attribute are as follows:

attribute ISC_Pin_Behavior of A_Nother_Device:entity is “CLAMP”;

specifics that device pins have the clamping behavior and:

attribute ISC_Pin_Behavior of One_More J)evice:entity is “HIGHZ”;

104 The In-System Configuration Handbook

specifies that device pins float while the device is being configured.

When a device is being programmed, it is valuable to drive the pins of
the device being programmed to state that ensure that system remains
quiescent. This might include setting active device control and enable pins

to ensure these devices are idle during configuration. Failing that, knowing
the connected pins will float allows designer to design their systems with

pull-ups or pull-downs on the proper wires will ensure correct and safe

system state during configuration. This attribute tells the designer what to

do to use this device properly.

1.1.3 The ISC_Fixed_System_Pins Attribute

The standard allows there might exist devices in which not all devices

pins are configurable. You could imagine a device as pictured in Figure 7-1

that consists of both configurable sections and a fixed function core.

Further, it is reasonable to assume the fixed function core has some IOs that

are pinned out. In that situation, the core’s IOs are not required to display

the same behavior as the configurable sections IOs while the device is being

configured. In fact, it would probably be desirable to have this flexibility. If

the core is a microprocessor, you would probably not want to be needed to

stop all microprocessor operations while the configurable section is being

programmed.

IEEE Standard 1532 105

FIXED SYSTEM PINS

FIXED FUNCTION
COREA

FIXED FUNCTION
COREB

~o—nr
FIXED SYSTEM PINS

PROGRAMMABLE PINS

PROGRAMMABLE LOGIC CORE

Ljlj LJLj

PROGRAMMABLE PINS

Figure 7-/. A Programmable Device with a Fixed Function Core

To show which system IO pins do not display the behavior specified by

the ISC_Pin_Behavior attribute, you use the ISC_Fixed_System_pins

attribute. This attribute consists of a list of pins names taken from the

logical port description statement that are fully functional during ISC
operations.

This example:

Attribute ISC_Fixed_System_Pins of Some_Device : entity is

"data_bus , INIT, CS(1), sys_clock";

shows that the pins listed are not affected by transitions into or out of
configuration mode and continue to work normally.

106 The In-System Configuration Handbook

1.1.4 The ISC_Status Attribute

IEHE SID 1532 details a specific mechanism for compliant devices to

communicate the status of completed operations. This method involves
providing specific data capture bits as status indicators. The standard does
not mandate the use of this specific approach although it strongly

recommends that some approach be used. So, although the mechanism may
be preferred and support for it is built-in, other proprietary schemes can be
used. Support for proprietary status schemes requires proper coding of the

device algorithms specified in later attributes of the BSDL.

This attribute is used to show whether the standard status scheme is

implemented in this device or not. Examples of the use of this attribute are

as follows:

attribute ISC_Status of Device_Got_It: entity is “Implemented”;

In the example, the device uses the standard status reporting mechanism.

attribute ISC_Status of Device_Dont_Got_It: entity is “Not

Implemented”;

In the example, the device is not equipped with the standard status

reporting mechanism.

1.1.5 The ISC_BIank_Usercode Attribute

The USERCODE instruction is mandatory for devices that comply with

IEEE STD 1532. A valuable capability of any IEEE STD 1532 environment

would be the ability to determine automatically if the device USERCODE
data had already been configured. Since the logic value of unprogrammed

cells depends on both the implementation technology and the whims of the

IC designers, it was important to be able to specify the exact value with

which a blank USERCODE would respond.

Specifying this attribute is illustrated by the following example:

Attribute ISC_Blank_Usercode of PLD1 .entity is

” 11111111111111111111111111111111 ”;

IEEE Standard 1532 107

1.1.6 The ISC_Security Attribute

As with device status, the standard describes one security method that, if

implemented, would assure automated support in any IEEE STD 1532

compliant tool set but allows for any proprietary variations. Although no

specific approach is mandated, some security mechanism is usually

implemented. Typically, the basic security supplied is the ability to hinder

read back of programmed data.

The method described by the standard is pictured in Figure 7-2. It

includes the ability to protect the device against unwanted erasure,

configuration or read back. These security mechanisms can be implemented

together or separately. In addition, this method optionally allows the various

protection mechanisms to be enabled by a key of specified length. The figure

included shows an implementation of a key enabled version with all three

security provisions.

108 The In-System Configuration Handbook

Figure 7-2. The IEEE STD 1532 ISC Security Mechanism

The standard implementation is controlled by the

ISC_PROGRAM_SECURITY instruction. Security data is shifted in using

the ISC_Pdata register. The data includes a key and three bits to enable or

disable the protection. The protection types include means to disable

unauthorized reads, programs or erases.

The security can be set and cleared only when the correct key is loaded.

The key is set when the default all-zeroes key is programmed with a non-

zero value. The all ones key is reserved for permanent security. Once the

all ones value is programmed into the device, the security setting cannot be

changed. There is no way to change the key or therefore the device security

anytime in the future. A non-one key can be erased only using the erase

instruction destroying not just the key but the programmed contents of the

device.

The ISC_SECURITY attribute need only be specified if the security

mechanism is implemented exactly as described by the standard. Proprietary

IEEE Standard 1532 109

implementations call for description of the operation of the security

mechanism in the flow section of the BSDL file.

The specifics of the attribute and what they mean are best indicated

through example. Consider the following:

attribute ISC_Security of Secure_Device:entity is

”ISC_Disable_Read 31, “ & ~ Bit 31 controls read security
,,

ISC_Disable_Program 30, “ & — Bit 30 controls program security

”ISC_Disable_Erase 29, “ & -- Bit 29 controls erasure security

”ISC_Disable_Key 28-0 “
;
~ Bits 28 down to 0 are a key

The security function is controlled by the ISC_PROGRAM_SECURITY
instruction that targets the ISC_PData register. The first three fields identify

a bit number within ISC_PData for each of three protection signals

ISC_Disable_Read, ISC_Disable_Program and ISC_Disable_Erase, if any

exist. If these specified bits are asserted then the associated security

mechanism is set up to be enabled.

The fourth field identifies the bits (if any exist) that form the security

key. If the optional key is implemented then the need for enabling the

security is that the security enabling bits are asserted and that correct key is

loaded. To improve security, the key is not specified in the BSDL file. The
key should be provided separately by the device manufacturer.

1.1.7 Description of ISC Algorithms in the BSDL File

The most complicated and in many ways, the most important parts of the

IEEE ST D 1532 BSDL extension are those parts that describe the algorithms
that access the configuration memory of the ISC device. This section is

broken into a hierarchy of three separate attributes that use the BSDL ISC
instructions and build on one another to create a description of all the
configuration operation possibilities for a single device. The three attributes

are the ISC_Flow, ISC_Procedure and ISC_Action.

1.1.8 ISCJFlow

This attribute is the lowest level attribute and describes the instructions
tincl associated data that must be loaded to carry out cither a complete task or
a portion of a task. The basic philosophy behind the flow is that at the
atomic level, a step in an ISC operation consists of

110 The In-System Configuration Handbook

1 . Loading an instruction then,

2. Loading data associated with it then,

3. Going to Run Test/Idle and waiting and then,

4. Going back to Shift DR to shift out a result on TDO.

An ISC function is described by putting together these atomic building

blocks in sequence. These operations, when strung together, can be

optimized but such optimization is not needed for the ISC function to work.

An ISC function or a portion of an ISC function that is built up from

these atomic operations, can generally be described by a construct that

describes setting up initial conditions, looping on a series of atomic

operations and then setting up some terminating conditions. It is exactly this

algorithmic control flow that is described by the ISC_Flow attribute. To
illustrate this, consider the following example:

attribute ISC_Flow of One_Example:entity is

”Program(Array) “ &
’’Initialize “ &
” (ISC_ADDRESS_SHIFT 16:$addi-0 wait TCK 1)

“ &
” (ISC_DATA_SHIFT 200:? wait TCK 1) “ &
” (ISC_PROGRAM wait 1.0e-2)” &
” (ISC_DISCHARGE wait 1 .0e-3)” &
’’Repeat 65535 “ &
” (ISC_ADDRESS_SHIFT 16:$addr+l wait TCK 1)

“ &
” (ISC_DATA_SHIFT 200:? wait TCK 1)

“ &
” (ISC_PROGRAM wait 1 ,0e-2)” &
” (ISC_DISCHARGE wait 1 .0e-3)” &
’’Terminate “ &
”(ISC_ADDRESS_SHIFT 16:FFFF wait TCK 1)” &
”(ISC_DATA_SHIFT 200:0 wait TCK 1 198:0*0,2:2*3);”

Now let us analyze the specified ISC_Flow. After the declaration of the

attribute name, the entity specifies the flow name itself. In this case, the

flow name is Program. The specifier in parentheses indicates the name of

the data block associated with this flow description. There is a separate ISC

data file. This file contains the configuration (and any other) data required

by the configuration algorithm. This file and its organization will be dis-

cussed more later but for now it is sufficient to note that the label Array

identifies the data in the ISC data file to be used by the ISC_Flow.

IEEE Standard 1532 111

The flow itself is broken up into Initialize, Repeat and Terminate

sections. They are performed in that order and all sections are optional but

at least one must exist. This means that any flow must have at least one of

the Initialize, Repeat or Terminate sections.

In examining the Initialize section of our example, it should be noted that

it is performed only once, in the order that it is specified. The basic fields of

each parentheses-enclosed statement are broken into the following elements:

(INSTRUCTIONJLOAD DATA_LOAD RTI_ACTION
DATA_CAPTURE)

In the INSTRUCTION_LOAD section, the actual instruction bit pattern

that should be loaded is specified. This is accomplished by traversing the

IEEE STD 1149.1 state machine to the Shift IR state and shifting in the

specified instruction bit pattern in the normal manner. After that is

completed, the state machine is guided to the Shift DR state skipping Run

Test/Idle to load the data specified in the DATA_LOAD field. After the

data has been shifted in and loaded, the state machine is guided to Run
Test/Idle. There it can wait for a certain number of TCK pulses, a certain

absolute amount of time or a sequential combination of the two in that order.

The exact behavior is specified by the RTI_ACTION field. When that

RTI_ACTION has completed, the state machine is guided to Shift_DR again

to shift in don’t care data for the expressed purpose of shifting out the

capture data as specified in the DATA_CAPTURE field for comparison or

output. The state machine is then guided back to execute the next

INSTRUCTION_LOAD skipping the Run Test/Idle state. Either of the

DATA_LOAD or the DATA_CAPTURE fields (or both) can be left out

Please note the sequences of these instruction and data loads might be
optimized when performed. For instance, the same instruction may not be
loaded multiple times, if repeated; DATA_LOADs and DATA_CAPTUREs
may be interleaved to reduce the shift time. Conversely, they also might not

be optimized. IEEE STD 1532 compliant devices must be able to operate

correctly, regardless of whether the flows are optimized or not.

Now that the specifics of the constituent statements of the flow are

understood, let us return to the Initialize block.

“ (ISC_ADDRESS_SHIFT 1 6:$addr=0 wait TCK 1)
“ &

” (1SC_DATA_SHIFT 200:? wait TCK 1)
“ &

112 The In-System Configuration Handbook

” (ISC_PROGRAM wait 1 .Oe-2)” &
” (ISC_DISCHARGE wait 1 .Oe-3)” &

The first statement indicates that the ISC_ADDRESS_SHIFT instruction

bit pattern is to be loaded into the device. Then after skipping Run Test/Idle

16 bits ot 0 (represented here as a hex value) are loaded while in the Shift

DR state. The zero value is also stored in the local variable “addr”

(variables are pointed out by the “$” prefix and have a scope within a single

flow only). After the 16 0’s are shifted in, the state machine is guided to

Run Test/Idle for a single TCK pulse. Note that in this case there is no

capture data to be examined so the shifting out step is skipped. It is

noteworthy, that if there are multiple devices being accessed concurrently,

one of which needs capture data then this device might carry out the capture

step (but ignore the resulting data shifted out). Then the next statement is

executed similarly.

The “?” indicates that the 200 bits of data required is to be read from the

ISC data file. The ISC_PROGRAM and ISC_DISCHARGE instructions

have no input or output data associated with them so the transitions to the

Shift DR can be skipped.

This completes the execution of the Initialize block. Next, the Repeat

block will be carried out. This is identical with the execution of the

Initialize block with the following differences. A number appears after the

Repeat keyword. This number points out the maximum number of times

that all the statements in the repeat block should be carried out in order. In

our example, this means the indicated block of 4 instruction and data op-

erations should be performed no more than 65535 times. If the file

supplying data to the instructions in the Repeat block (with the “?”

character) is exhausted before the maximum loop count is reached, the

repeat block finishes without error (there must however, be enough data in

the file to complete executing all the instructions in the Repeat block). If the

file supplying data to the instructions in the Repeat still has more data for

this repeat block after the maximum loop count is reached then it is an error

condition. It should also be noted the addr variable is incremented in the

ISC_ADDRESS_SHIFT operation in the Repeat block. The increment

occurs before the value is shifted into the device. This means the first time

the Repeat block is completed the data shifted in is 0001 (hex). This

incremented value is stored in addr and incremented again in the next

traversal of the loop.

IEEE Standard 1532 113

After the repeat block completes successfully, the Terminate block is

executed. In the example above, the terminate block ISC_DATA_SHIFT

instruction has a data capture field specified. The exact specification is as

follows:

“(ISC_DATA_SHIFT 200:0 wait TCK 100 198:0*0,2:2*3);”

It says the ISC_DATA_SHIFT instruction bit pattern is to be loaded then

without traversing Run Test/Idle, 200 bits of 0 are to be loaded in Shift DR.

After that has been completed, the state machine is guided to the Run

Test/Idle state and 200 TCK pulses are delivered to the device. Then the

state machine is directed to the Shift DR state and 200 don’t care bits are

shifted in. The data output on TDO is compared against the expected result

specified. The 200 bits are broken into quantities of 2 and 198 bits. The

first two bits out are compared against the value 2 (hex; 10 binary) as

pointed out by the value * mask syntax. The digits to the right of the * show

the mask. A binary 1 in any mask position signals a significant bit that

should be compared. A binary 0 signals the bit value is “don’t care”.

Therefore, the final 198 bits shifted out are not significant as the mask is all

0’s.

Using this syntax provides a powerful method for describing

configuration memory access operations including all manner or erase,

program and read functions.

This syntax also allows devices to be broken up into sectors, each of
which is addressed individually. In this manner, a collection of flows can be
assembled to describe how to access a device comprised of multiple non-
homogeneous sectors with different ISC algorithms.

Another capability within the description is identifying data that

contributes to a configuration data cyclic redundancy check (CRC). The
CRC can be used to identify the programmed contents of the device. The
CRC calculation is associated with reading data from the device. The CRC
tags in the description syntax are associated with read back data.

Another important consideration in developing flows to describe
configuration algorithms is configuration data size reduction. Keeping the
configuration data size small has advantages in embedded systems reducing
the run-time data storage needed. Ihe flow syntax includes some arithmetic
(add, subtract) and logical (and, or) operations. These can be used to
calculate address or sector data reducing the need to store it in the data file.

114 The In-System Configuration Handbook

1.1.9 ISC_Procedure

I he ISC_Procedure is used to describe a complex in-system operation.

An ISCMProcedure is built by assembling discrete ISC_Flow elements. The
ISC_Flow element is just a building block to simplify specifying

ISC_Procedures. So the ISC_Procedure is a list of ISC_Flow descriptor

elements that are carried out unconditionally and in order of their listing. In

addition, ISC__Flow descriptor elements may contain a reference to a data

name elements that must match identical data name elements in the ISC data

file.

To perform a procedure, the flows in that procedure are performed in

order from first to last. A flow is performed unconditionally if it does not

take data input. If a flow needs data input, the associated ISC data file is

scanned for a matching data name element. If no data with a matching data

name is found, an error occurs.

There are sets of predefined procedure names that have meanings as

listed below. As a rule, all predefined procedure names begin with “proc_ ”.

proc_read: Read the device’s memory arrays and output the values,

for example, to a file.

proc_verify: Verify the device’s memory arrays against user-supplied

data typically from the ISC data file.

proc_program: Program the device’s memory arrays with user-

supplied data typically from the ISC data file.

proc_erase: Bulk-erase the device.

proc_blank_check: Compare the device against its blank state.

proc_enable: Enter ISC mode. The minimal content of this procedure

is the ISC_ENABLE instruction.

proc_disab!e: Exit ISC mode. The minimal content of this procedure

is the ISC_DISABLE instruction.

proc__pre!oad: Preload the boundary-scan register using the

PRELOAD instruction. It is used for devices with CLAMP-like IO pin

behavior during programming. This procedure may be carried out

before proc_enable. By referencing the standard data name

“preload”, an interface can determine it is to get state information tor

the boundary-scan register that is application dependent.

proc_error_exit: This mandatory procedure may be performed by

software at run-time when an action is to be canceled (for example,

because the user pressed a ‘break’ key) or some error condition is

sensed. The minimal content of this procedure is the 1SC_D1SABLE

IEEE Standard 1532 115

instruction, but ISC_DISCHARGE or other instructions may be

placed here. This procedure is used to terminate programming without

the ISC_Done bit being set.

proc_program_done: An action calls this mandatory procedure to set

the ISC__Done bit.

1.1.10 ISC.Action

In the same way that ISC_Procedures are collections of ISC_Flows,

ISC_Actions are collections of ISC_Procedures. The ISC_Procedures that

comprise the ISC_Action are carried out in the order of their listing from

first to last. The ISC_Procedures that make up each ISC_Action, however,

can sometimes be optionally enabled or disabled. Each ISC_Action can be

labeled as optional or recommended (or with no designator at all). An op-

tional ISC_Procedure is one that is not executed unless directed to by the

end-user. A recommended ISC_Procedure is just the opposite, it is executed

unless directed not to by the end-user.

As with lSC_Procedures, there are a set of predefined action names that

have meanings as listed below.

read: Read a memory region of a device. The optional <data name>
may specify data arrays, IDCODE, USERCODE, and security bits.

This can also be used to produce a checksum of the read data using

the CRC tags found in the flows.

verify: Verify a memory region of a device’s memory arrays,

IDCODE, USERCODE, or security bits against user-supplied data,

program: Program a memory region of the device. This action does
all the steps needed to install data in a device, whether it is previously

programmed or not. 1 ypically, the device is bulk-erased, blank-

checked, programmed, and verified.

erase: Bulk-erase the device or erase a region of the device.

blank_check: Compare the device against its blank state.

Besides predefined <action name> elements, the following is allowed.

<identifier>

:

Perform some operation on the device.

Note the name of operation cannot be localized, and will not necessarily
be handled in a standard way on user interfaces of applications that interpret

IEEE SID 1532 BSDL files. User interfaces are not in fact required to

116 The In-System Configuration Handbook

display these operations at all. Identifiers should only be used for device-
specific functions.

1.1.11 The ISCJlIegalJExit Attribute

It is preferred that devices that adhere to IEEE STD 1532 allow
transitions from ISC instructions to non-ISC instructions without conditions
or unusual side effects. This allows interleaving of test and program
operations that can reduce overall manufacturing time through test and
configuration. This is particularly dramatic when test instructions are used
to configure non-IEEE STD 1532 compliant flash memory devices using

their surrounding devices’ boundary-scan registers.

However, there are situations where practical limits in the design of a

programmable logic device prevent the return from a non-ISC instruction to

the middle of a programming sequence. The optional ISCJllegaLExit
attribute describes any instruction that, as a side effect of its execution,

clears the ISC_Enabled signal. Because this behavior can be instruction

dependent, the ISC_Illegal_Exit attribute allows for specifying only those

instructions.

1.1.12 The ISC_Design_Warning Attribute

The optional ISCJDesign_Warning attribute may be used, in a manner

identical with the Design_Waming attribute of BSDL, to alert users to

special circumstances that may exist in the ISC implementation of a given

ISC device.

1.2 IEEE STD 1532 BSDL File Example

It is instructive to examine an IEEE STD 1532 BSDL file to better

understand the structure and use of such information. Because of this

consider the following example. Great portions of this example are identical

with IEEE STD 1 149.1 BSDL. Namely, the first declaration of the entity is

identical. In this case out entity is ‘TAKE_1532_DEVICE”

Entity FAKE_1532_DEVICE is

As with an IEEE STD 1 149.1 BSDL the device 10 ports and package pin

mappings are defined. In this case, we are dealing with a PC44 package.

Generic (PHYSICAL_PIN_MAP : string := “pc44”);

IEEE Standard 1532 117

There is a broad collection of pins of all types; power, ground,

bidirectionals, inputs, outputs and of course the 4 TAP pins.

port (TDI: in bit; TMS: in bit; Gnd_2: linkage bit; TCK: in bit;

Vcc_l: linkage bit; OUT1: out bit; OUT2: out bit; BIDIR1: inout bit;

BIDIR2: inout bit; BIDIR3: inout bit; BIDIR4: inout bit;

OUT3: out bit; INI: in bit; Vcc_2: linkage bit; Vcc_l: linkage bit;

Gnd_3: linkage bit;OUT4: out bit
;
OUT5: out bit; OUT6: out bit;

Vcc_3: linkage bit; OUT7: out bit; Gnd_4: linkage bit; OUT8: out bit;

TDO: out bit; Vpp: linkage bit; Vcc_4: linkage bit;

Vcc_2: linkage bit; OUT9: out bit; Gnd_l: linkage bit; OUTIO: out

bit;

CLK: in bit);

Now comes the first hint that this is an IEEE STD 1532 BSDL file. The
inclusion of the IEEE_1 532_2002 definitions package signals the BSDL
may include some attributes defined by that standard.

use STD_1 1 49 1 2001 .all;

use STD_1 532_2002.all;

The conformance attribute is specific to IEEE STD 1 149.1. Since there

is only one version of IEEE STD 1532 there is no specification of the

conformance.

attribute COMPONENT_CONFORMANCE of
FAKE_1 532_DEVICE : entity is

“STD_1 1 49_1_200 1”;-- could also be STD_1 149 1 1993

The pin map shows how the device ports map to its pins. This is a
standard IEEE STD 1 149.1 BSDL requirement.

attribute PIN_MAP of FAKE_1532_DEVICE : entity is

PHYSICAL_PIN_MAP;
constant pc44: PIN_MAP_STRING:=
“TDI:3, TMS:5, Gnd_2:6, TCK:7, Vcc_l :8, OUT1 :9, OUT2: 1 0,” &
“BIDIR1 : 1 3, BIDIR2:44, BIDIR3:1

,
BIDIR4:20, OUT3:14, IN1.15,”

&
tt

tt

Vcc_2: 1 6, VccJ : 1 7, Gnd_3: 1 8, OUT4: 1 9, OUT5:21 , OUT6:25,” &
Vcc_3:26, OUT7:27, Gnd_4:28, OUT8:29, TDO:31

, Vpp:35, “ &
Vcc_4:36, Vcc_2:38, OUT9:40, Gnd_l :41 , OUT 10:42, CLK:43”;

118 The In-System Configuration Handbook

The TAP signal definition section is also a basic IEEE STD 1149.1

requirement. It points out the maximum frequency of the test clock signal

and the <> of the other three TAP signals.

attribute TAP_SCAN_IN of TDI : signal is true; attribute

TAP_SCAN_OUT ofTDO : signal is true; attribute

TAP_SCAN_MODE ofTMS : signal is true; attribute

TAP_SCAN_CLOCK ofTCK : signal is (l.OOe+07, BOTH);

The instruction definition section is identical with that of the IEEE STD
1149.1 BSDL. The instruction register length is defined. Then the list of

available instruction bit patterns is defined. The instruction bit pattern

patterns are assigned according to the designer’s implementation. Grouping

the instructions in the file is for clarity only.

attribute INSTRUCTION_LENGTH of FAKE_1532_DEVICE :

entity is 8;

attribute INSTRUCTION_BIT PATTERN of FAKE_1532_DEVICE :

entity is

“BYPASS (1111111 1),” &
“SAMPLE (00000001),” &
“PRELOAD(00000001),” &
“EXTEST (00000000),” &
“IDCODE (11111110),” &
“USERCODE (11111 101),” &
“HIGHZ (1 111 1100),” &
“CLAMP (1111 1010),” &

ISC Instructions

“ISC_NOOP(1001111 1),” &
“ISC_ENABLE (1 1 101000),” &
“ISC_PROGRAM (1 1 101010),” &
“ISC_PROGRAM_DONE (1110111 0),” &
“ISC_ADDRESS_SHIFT (1 1 101011),” &
“ISC_READ (1110111 1),” &
“ISC_ERASE (11101 100),” &
“ISC_DATA_SHIFT (11101 101),” &
“ISC_DISABLE (1111 0000),” &

Proprietary ISC Instructions

IEEE Standard 1532 119

“VENDOR_BLANK_CFIECK (1 1 100101),” &

Private Instructions

“PRIVATE 1 (111 10001),” &
“PRIVATE2 (11100011)”;

The instruction capture attribute points out the value of the bits shifted

out of the device as an instruction is shifted in. The two rightmost bits’

values are mandated by IEEE STD 1149.1. The next bit to the left is

mandated by IEEE STD 1532 to signal the state of the internal ISC_DONE
signal. Because this bit’s value will change according to the device’s state,

it is specified as a don’t care in the BSDL file. The designer is free to define

extra bits that have variable values, as don’t cares as well.

attribute INSTRUCTION_CAPTURE of FAKE_1532_DEVICE :

entity is “00XXXX01”;

The instruction private attribute defines those instructions that are for

private use, typically by the device manufacturer. This is part of the IEEE
STD 1149.1 BSDL file.

attribute INSTRUCTION_PRIVATE of FAKE_1532_DEVICE :

entity is “PRIVATE1, PRIVATE2”;

Since the IDCODE instruction is mandatory in IEEE STD 1532, the

IDCODE register attribute must also be defined. This represents the data

value that will be shifted out when the IDCODE instruction is active. This is

no different from that of IEEE STD 1 149.1.

attribute IDCODE_REGISTER of FAKE_1 532_DEVICE: entity is

“0001" & — version

“01010010001 10100" & — part number
“0101 1001001" & — manufacturer’s id

“1”; — required by standard

Like the IDCODE, the USERCODE is mandatory in IEEE STD 1532.
I his means the USERCODE register attribute must be defined. This
represents the data value that will he shifted out when the USERCODE
instruction is active. This is no different from that of IEEE
STD 1149.1.

120 The In-System Configuration Handbook

attribute USERCODE_REGISTER of FAKE_1532_DEVICE : entity

is “XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX”;

The register access attribute defined the data register that is associated

with each instruction. This is identical with that attribute of IEEE STD
1149.1.

attribute REGISTER_ACCESS of FAKE_1532_DEVICE : entity is

DEVICE_ID (IDCODE, USERCODE)

&

ISC_DEFAULT[1] (ISC_DISABLE, lSC_NOOP, ISC_ERASE, “ &
ISCJPROGRAM, ISC_PROGRAM_DONE)

&

ISC_CONFIG[6] (ISC_ENABLE),” &
ISC_PDATA[2048] (ISC_READ, ISC_DATA_SHIFT),”&

VENDOR_BLANK[1 28] (VENDOR_BLANK_CHECK),”&

ISC_ADDRESS[1 6] (ISC_ADDRESS_SHIFT)”;

tt

tt

tt

tt

tt

tt

tt

The boundary-scan register definition is defined as in IEEE STD 1 149.1.

The length and composition of the boundary-scan register is used to facili-

tate generation of vectors for interconnect test.

attribute BOUNDARY_LENGTH ofFAKE_1532_DEVICE : entity

is 34;

attribute BOUNDARY_REGISTER of FAKE_1532_DEVICE : entity

is

k
0 (BC_1 , CLK, input, X),” &
1 (BC_1 , *, controlr, 0),” &
2 (BC_1, OUT 10, output3, X, 1, 0, Z),” &
3 (BC_1

,
*, controlr, 0),” &

4 (BC_1 , OUT9, output3, X, 3, 0, Z),” &
5 (BC_1 , *, controlr, 0),” &
6 (BC_1, OUT8, output3, X, 5, 0, Z),” &
7 (BC_1 , *, controlr, 0),” & 1

8 (BC_1, OUT7, output3, X, 7, 0, Z),” &
9 (BC_1, *, controlr, 0),” &
10 (BC_1, OUT6, output3, X, 9, 0, Z),” &

“
1 1 (BC_1 ,

*, controlr, 0),” &
“ 12 (BC_1, OUT5, output3, X, 1, 0, Z),” &
“ 13 (BC_1, *, controlr, 0),” &
14 (BC_1, OUT4, output3, X, 13, 0, Z),” &
15 (BC_1, INI, input, X),”&

16 (BC_1, *, controlr, 0),” &

tt

tt

66

66

66

66

66

66

66

66

It

tt

tt

IEEE Standard 1532 121

“ 17 (BC_1, 0UT3, output3, X, 16, 0, Z),” &
“ 18 (BC_1, *, controlr, 0),” &
“ 19 (BC_1, BIDIR1, output3, X, 18, 0, Z),” &
“ 20 (BC_1 ,

BIDIR1, input, X),” &
“21 (BC_1, *, controlr, 0),” &
“ 22 (BC_1, OUT2, output3, X, 21, 0, Z),” &
“ 23 (BC_1

,
*, controlr, 0),” &

“ 24 (BC_1, OUT1, output3, X, 23, 0, Z),” &
“ 25 (BC_1, *, controlr, 0),” &
“ 26 (BC_1, BIDIR2, output3, X, 25, 0, Z),” &
“ 27 (BC_1, BIDIR2, input, X),” &
“ 28 (BC_1, *, controlr, 0),” &
“ 29 (BC_1, BIDIR3, output3, X, 28, 0, Z),” &
“ 30 (BC_1, BIDIR3, input, X),” &
“ 31 (BC_1, *, controlr, 0),” &
“ 32 (BC_1, BIDIR4, output3, X, 31, 0, Z),” &
“ 33 (BC_1, B1D1R4, input, X)”;

The section of the BSDL relating specifically to ISC begins after the

boundary-scan register definition. These attributes are used by ISC

applications to operate the device properly and prepare vectors for

configuration of the device in-system.

The 1SC_PIN_BEHAVI0R attribute shows how the device pins behave

while the device is in ISC mode. Device pins can have two possible

behaviors. First, they can float and act as if a HIGHZ instruction instruction

were loaded. Second, they can have their behaviors defined by the boundary-

scan register contents acting as if a CLAMP instruction were loaded.

attribute ISC_PIN_BEHAVIOR of FAKE_1532_DEVICE : entity is

“CLAMP”
;
— clamp behavior

Ihe ISC_STATUS attribute points out whether this device includes

operation status reporting as described by the standard. Devices that do

support this mechanism, when used with compliant software, will have their

status monitored automatically.

attribute ISC_STATUS of FAKE_1532_DEV ICE : entity is “NOT
IMPLEMENTED”

;

122 The In-System Configuration Handbook

The ISC_BLANK_USERCODE attribute shows the value stored as the

USERCODE value when it is unprogrammed. This is useful to help tools

identify whether the USERCODE has yet been set.

attribute ISC_BLANK_USERCODE of FAKE_1532_DEV1CE :

entity is “1 1

1

1 1 1 ”;

The ISC_FLOW attribute defines the building blocks of the device’s

configuration access algorithms.

attribute ISC_FLOW of FAKE_1 532_DEVICE : entity is

The names and order of the flows are arbitrary and defined by the de-

signer. In this first flow, flow_program, the “array” tag points out that this

flow uses data in the ISC file labeled with the “array” indicator. The
flow_program defines how to configure the device pattern memory. Each
flow descriptor typically defines an atomic configuration function like erase,

program or verify.

“flow_program(array) “

“initialize “ &
“(ISC_DATA_SHIFT 2048:? wait TCK 1)” &
“(ISC_ADDRESS_SHIFT 16:0000 wait TCK 1)”&

“(ISC_PROGRAM wait 14.0e-3)”&

“Repeat 5 “ &
“(ISC_DATA_SHIFT 2048:? wait TCK 1)” &
“(ISC_PROGRAM wait 14.0e-3)”&

In this second flow, flow_verify, the same “array” tag is used as in the

flow_program. This indicates the device can reuse programming data for

verification without modification. IEEE STD 1532 is prejudiced towards

devices with this design. Devices that need a different arrangement of data

for verify as for program are allowed but would require larger ISC files. In

addition data readback from the device cannot be used directly to reprogram

another device except using a vendor provided data reformatting tool. This

flow uses data in the ISC file labeled with the “array” indicator. The

flow_verify defines how to read back the device pattern memory and

compare it against the expected configuration data.

Read back verify using auto-incremented address

“flow_verify(array) “ &
“initialize “ &

IEEE Standard 1532 123

“(ISC_ADDRESS_SHIFT 16:$addr=0 wait TCK 1)” &
“(ISC_READ wait 50.0e-6 2048:$data?:CRC)” &
‘"Repeat 5 “ &
“(ISC_READ wait 50.0e-6 2048:$data?:CRC),” &

In this third flow, flow_read, the same “array” tag is used as in the

flow_program. This flow again uses data in the ISC file labeled with the

“array” indicator. In any event, an examination of the flow will reveal that

no data is read from the ISC data file for this flow. This is obvious owing to

the absence of the “?” in the flow. The array tag is present only for

completeness. The flow_read defines how to read back the device pattern

memory and dump it to an output indicated by “!”. The CRC stag specifies

which bits contribute to the device CRC calculation. ’ The CRC calculation

formula is fully detailed in the IEEE STD 1532 document.

Read back using auto-incremented address

“flow_read(array) “ &
“initialize “ &
“(ISC_ADDRESS_SHIFT 16:$addr=0 wait TCK 1)” &
“(1SC_READ wait 50.0e-6 2048:!:CRC)” &
“Repeat 5 “ &
“(ISC_READ wait 50.0e-6 2048:!:CRC) ,” &

The fourth and fifth flows define how to enter (flow_enable) and exit

(flow_disable) ISC mode.

“flow_enable “ &
“initialize “ &
“(ISC_ENABLE 6:4 wait TCK 1

),” &

“flow_disable “ &
“initialize “ &
“(ISC_DISABLE wait 1 10.0e-3)” &
“(ISC_NOOP wait TCK 1),” &

The sixth flow defines how to read and confirm the IDCODE value. The
name of this flow is also flow_verify but it indicates that idcode is the data
tag. This is a simple example of a secondary method for differentiating
between different verify flows. Another application is the situation in which
the device program memory is segmented. In that case, data tags can be used
to differentiate between different memory segments. It should also be noted

* ^4 The In-System Configuration Handbook

the idcode tag could also be used to point out data to read out of the ISC file

to perform the named operation.

Read IDCODE value, mask out version bits

“flow_verify(idcode) “ &
“initialize “ &
“(IDCODE wait TCK 1 32: 1 5434593*0FFFFFFF),”&

The seventh flow defines how to erase the device program memory.

“flow_erase “ &
“initialize “ &
“(ISC_ADDRESS_SHIFT 16:0001 wait TCK 1)”&

“(ISC_ERASE wait 100.0e-3) ” &

The eighth flow defines how to perform a blank check operation. The

blank check operation tests if the device program memory is erased.

Test if the device is blank

“flow_blank_check “ &
“initialize “ &
“(VENDOR_BLANK_CHECK wait 50e-3 “ &
“

1 28:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)”&

The ninth flow defines how to read and confirm the USERCODE value.

The name of this flow is also flow_verify but it indicates that usercode is the

data tag. This is a similar use of the data tag as with the idcode flow. It

should also be noted the usercode tag could also be used to point out data to

read out of the ISC file to perform the named operation.

Compare USERCODE value against blank value

“flow_verify(usercode) “ &
“initialize “ &
“(USERCODE wait TCK 1 32:FFFFFFFF),” &

The tenth flow is similar to the ninth excepting the USERCODE value is

read out to output indicated by “!”.

Compare USERCODE against value read from INPUT

IEEE Standard 1532 125

“flow_read(usercode)
44 &

“initialize
44 &

“(USERCODE wait TCK 1 32:!),” &

The eleventh flow says how to program the ISC_DONE signal. This

flow programs the control bit (or bits) that enable the external device IOs

after programming has completed successfully. This is a mandatory flow

and must appear in every compliant device's BSDL file.

“flow_program_done
44 &

“initialize
44 &

“(ISC_PROGRAM_DONE wait 14.0e-3)

&

The twelfth flow is the mandatory flow describing how to exit when an

error condition is encountered during execution of any other flow. An error

condition is signaled when a data mismatch is detected in any capture field

of any flow or when a failure status condition is detected. When an error is

detected, the shift is completed and then flow execution is immediately

transferred to the flow_error_exit flow. This flow is typically used to set the

internal device registers in a benign state and make available specific infor-

mation about the nature of the failure more readily available.

On any error, erase the device

“flow_error_exit
44 &

“initialize
44 &

“(ISC_ADDRESS_SHIFT 16:0001 wait TCK 1)”&
“(ISC_ERASE wait 100.0e-3),”&

“(ISC_D1SABLE wait 1 10.0e-3)” &
“(ISC_NOOP wait TCK 1)”;

Recall that each procedure is made of one or more flows so once the

flows are in place the procedures can be built. The procedures identify the

middle level building block of device access functionality. The procedures
are used to collect flows and sometimes simplify them. For instance, the

"array" data tag of the flow_program, flow_verify and flow_read is removed
in its procedure description.

attribute ISC.PROCEDURE of FAKE_1532_DEVICE : entity is

“proc_veri fy(idcode) = (flow__verify(idcode)),” &
“proc_enablc = (flow_enab!e),” &

126 The In-System Configuration Handbook

“proc_disable = (flow_disable),” &
“proc_erase = (flow_erase),” &
“proc_blank_check = (flow_blank_check),” &
“proc_program = (flow_program(array)),” &
“proc_verify = (flow_verify(array)),” &
“proc_verify(usercode) = (flow_verify(usercode)),” &
“proc__read = (flow_read(array)),” &
“proc_read(usercode) = (flow_read(usercode)),” &
44

proc__program_done = (flow__program_done),” &
“proc_error_exit = (flow_error_exit)”;

Now, with the procedures in place, they are assembled into actions that

are the user level macro operations. At the action level, procedures are also

tagged with their user options (recommended: that is, default on and

optional: that is, default off). Procedures are performed sequentially

according to their specification in the action. The user options can be

changed by the contents of the ISC data file by using the override records.

attribute ISC_ACTION of FAKE_1532_DEVICE : entity is

“erase = (proc_verify(idcode) recommended,” &
“ proc_enable,” &
“ proc_erase,” &
“ proc_blank_check optional, “ &
“ proc_disable),” &
“program = (proc_verify(idcode) recommended,” &
“ proc_enable,” &
“ proc_erase,” &
“ proc_blank_check proprietary optional, “ &
“ proc__program,” &
“ proc_enable,” &
“ proc_verify optional,” &
“ proc_disable),” &
“verify = (proc_verify(idcode) recommended,” &
“ proc_enable,” &
“ proc_verify,” &
“ proc_disable),” &
“read = (proc_verify(idcode) recommended," &
“ proc_enable,” &
“ proc_read,” &
“ proc_disable)”;

end FAKE_1 532_DEV1CE;

IEEE Standard 1532 127

1.3 Using the IEEE STD 1532 BSDL File

When approaching an IEEE STD 1532-based electronic system, the

designer must collect the constituent device 1532 BSDL files and their

associated ISC programming data files. A sample chain of IEEE STD 1532

devices is included as Figure 7-3. An application that accesses IEEE STD
1532 devices reads the device BSDL files and stitches them together in a

manner to represent the arrangement of devices in their TAP interconnect

order. This then is used to represent the device algorithm database. This can

be used to set a configuration strategy automatically in two ways. First, the

application can use the BSDL and ISC data to configure the device directly.

Second, the application can be used to generate the configuration algorithm

and data in some intermediate format that can be used and applied to the

system some point later in time.

The typical scenario for use of IEEE STD 1532 compliant programmable

devices is as follows. First, since IEEE STD 1532 compliant devices are

also by definition IEEE SI D 1 149.1 compliant a single serial chain of IEEE
STD 1532 devices may also include IEEE STD 1149.1 devices. This will

allow for ease of integration of interconnect test and device configuration.

Another alternative would be to separate programmable devices and mask
programmed devices into separate chains. This might simplify and
streamline device configuration by reducing the number of bypassed devices

and the complexity of the TMS and TCK distribution. Unfortunately, it

complicates interconnect testing by forcing the synchronization of multiple

boundary-scan chains and the development of two independently applied but

otherwise dependent sets of test vectors.

Once the chain architecture is in place, for each IEEE STD 1 149.1 device
a BSDL file is needed. If bypassing the device, the instruction register length
is all that is needed since the bypass instruction is standardized to be all 1 ’s.

As well, the IEEE STD 1532 BSDL and ISC data files are needed for each
IEEE STD 1532 device.

To set up device configuration, the application software accepts all the
BSDL and ISC data files and then, according to the user-specified actions
and options, produces a vector stream that carries out the device operations.
A sophisticated application will be able to optimize system configuration
times by performing these operations in concurrent mode. What this means
is the application is able to coordinate device bum times in a manner to
allow many devices to program (or erase or read) locations simultaneously.

128 The In-System Configuration Handbook

It this optimization is done intelligently, then many devices can be con-

figured in the same time it takes for a single device.

Figure 7-3. A Sample Multiple Device Chain

To better understand this, consider the following examples. In the first

scenario, we look at the most likely and most simple situation, that of two

identical devices:

Device 1

:

Repeat 50

1SC_PR0GRAM 32:? Wait 10 msec

Device 2:

Repeat 50

ISCJPROGRAM 32:? Wait 10 msec

A simple method for developing a concurrent flow would look like this:

Repeat 50

ISC_PROGRAM, ISC_PROGRAM 32:?, 32? Wait 10 msec

Neglecting the contribution of shift times (which might not always be

accurate, but more on this later), the total configuration time would be 50 *

10 msec or 500 msec. Compare this against the sequential configuration

time of 50 * 10 msec + 50 * 10 msec or 1 second. Concurrency represents a

system configuration time savings of roughly 50%. As more identical

devices are added the total concurrent configuration time remains 500 msec -

IEEE Standard 1532 129

as long as you can shift the bits in fast enough relative to the wait time of 10

msec. In fact, if your TCK is running at 10 MHz then 10 devices will only

contribute 320 shifts or 32 microseconds for each ISC_PROGRAM

instruction. This can clearly provide significant throughput improvement

when applied to a manufacturing line processing thousands or tens of

thousands of these devices.

Let’s look at a slightly more complicated example. In this scenario, we

have two devices with similar program flows but different bum times and

sizes.

Device 1:

Repeat 50

ISC_PROGRAM 32:? Wait 10 msec

Device 2:

Repeat 25

ISC_PROGRAM 64:? Wait 15 msec

A simple method for developing a concurrent flow would look like this:

Repeat 25

ISC_PROGRAM, ISCLPROGRAM 32:?, 64? Wait 15 msec

Repeat 25

ISC_NOOP, ISC_PROGRAM 1:1, 32:? Wait 10 msec

Neglecting the contribution of shift times, the total configuration time

would be 25 * 15 msec + 25 * 10 msec or 625 msec. Compare this against

the serial configuration time of 50 * 10 msec + 25 * 15 msec or 875 msec.

Concurrency represents a system configuration time savings of around 30%.

A more complicated example has some more interesting possibilities as

explained below:

Device 1

:

Repeat 25

ISC_ADDRHSS_SH IFT 36:$addr+l Wait TCK 1

ISC_DATA_SHIFT 1024:? Wait TCK 1

ISC_PROGRAM Wait 1 00 microseconds

Device 2:

Repeat 50

ISCLPROGRAM 256:? Wait 10 microseconds

130 The In-System Configuration Handbook

One approach to assign a concurrent flow would be to combine the large

wait times together coordinating the ISC_PROGRAM instructions. This

would look like this:

Repeat 25

ISC_ADDRESS_SHIFT, ISC_NOOP 36:$addr+l, 1:0 wait TCK 1

ISC_DATA_SHIFT, ISC_NOOP 1024:?, 1:0 wait TCK 1

ISC_PROGRAM, 1SC_PR0GRAM 1:0, 256:? wait 100 microseconds

Repeat 25

ISC_NOOP, ISC_PROGRAM 1:0, 256:? wait 10 microseconds

Neglecting the contribution of the shift times, the total configuration time

would be 25 * 100 microseconds + 25 * 10 microseconds or 2.75

milliseconds. When compared against the sequential time of 25 * 100

microseconds + 50 * 10 microseconds or 3 milliseconds you see a less

dramatic but still measurable savings. Further efficiencies can be squeezed

out of concurrency as follows:

Repeat 16

ISC_ADDRESS_SHIFT, ISC_PROGRAM 36:$addr+l, 256:? wait 10

microseconds

ISC_DATA_SHIFT, ISC_PROGRAM 1024:?, 256:? wait 10

microseconds

ISC_PROGRAM, ISCLPROGRAM 1:0, 256:? wait 100 microseconds

Repeat 1

ISC_ADDRESS_SHIFT, ISC_PROGRAM 36:$addr+l, 256:? wait 10

microseconds

ISC_DATA_SHIFT, ISC_PROGRAM 1024:?, 256:? wait 10

microseconds

ISC_PROGRAM, ISC_NOOP 1:0, 1:0 wait 100 microseconds

Repeat 8

ISC_ADDRESS_SHIFT, ISC_NOOP 36:$addr+l, 1:0 Wait TCK 1

ISC_DATA_SHIFT, ISC_NOOP 1024:?, 1:0 Wait TCK 1

ISC_PROGRAM, lSC_NOOP 1:0, 1:0 Wait 1 00 microseconds

In this variation, all the operations of Device 1 are combined in all steps

of Device 2. The total time is therefore 17 * (100 microseconds + 10

microseconds + 10 microseconds) + 8 * 100 microseconds or 2.84 millisec-

onds. This is slightly longer than the previous version. But if TCK is

running at less than 100 KHz then each TCK pulse takes 10 microseconds or

IEEE Standard 1532 131

longer. By combining the ISC_DATA_SHIFT and ISC_ADDRESS_SHIFr

operations with Device 2’s 1SC_PR0GRAM, you increase configuration

throughput. Redoing the numbers with wait TCK 1 taking 10 microseconds,

you get the sequential time is 3.5 milliseconds. The first approach reduces

the total configuration time to 3.25 milliseconds but the second approach

reduces the total configuration time to 3 milliseconds.

If the TCK period is 10 microseconds then it is also true that a shift of

1024 bits cannot be safely ignored in calculating the configuration time

throughput. A shift of this length will take 10.24 milliseconds. In this

situation, the shift time is significantly greater than the wait time. It might

be the case that at slow TCK speeds when there is much shifting to do and

when the program wait times are small, sequential configuration will be the

fastest.

This short example explains some of the parameters that must be

evaluated by IEEE STD 1532 applications to discover the ideal collection of

devices to carry out concurrent configuration efficiently. It may in fact be

the case that for some device groupings, concurrent configuration may be

slower than sequential configuration. This will likely be the case when the

TCK speeds are slow and the disparity between device wait times is great.

The time saved in these examples seems small. These examples,

however, are for small amounts of data and small numbers of devices. In

larger groups of larger devices and across large numbers of boards typical of
a manufacturing run, the time saving will be large and translate into

significant dollar savings.

Having devices that are IEEE STD 1532 compliant enables the use of
concurrency. Devices of this sort are guaranteed to be well behaved and not

to be damaged if their bum times are exceeded or too many TCK pulses are

applied as may well happen, when grouped with other devices in concurrent
mode.

Applications that use the IEEE STD 1532 BSDL and ISC files directly as
in figure 7-4, have certain significant advantages over those that create an
intermediate file as in Figure 7-5. I he key advantage is that they are more
easily adaptable to changing scenarios that are typical of the board
maintenance process, for instance, during initial board programming you
collect all BSDL and ISC files and produce a single concurrent configuration
description in some intermediate form. Eater, however, it one or two design
patterns change then you have some decisions to make. You will have a

132 The In-System Configuration Handbook

series ol boards that need to be updated and new boards that need to be fully

programmed. Using an application that needs an intermediate file would
require generation ot two new files. One file that configures just the updated

design patterns and one that does a full concurrent configuration of the new
boards. This full reconfiguration file must use the new patterns for the

changed devices and the original patterns for the unchanged devices. If the

application simply uses the BSDL and ISC files directly then no extra file

generation and tracking is needed. The source BSDL and ISC files are used

directly.

y

TARGET
SYSTEM

Figure 7-4. User flow when BSDL and ISC files are used directly

An intermediate file has an advantage in a system in which changes are

unlikely to occur in that the configuration algorithm is produced once and

reused with each application. This saves the processing time associated with

recalculating the configuration algorithm.

IEEE Standard 1532 133

Figure 7-5. User flow when Intermediate files are used

A good application should allow the end user to select the mode of

operation that is best for their situation and temperament. For instance,

allowing intermediate file use during production runs and direct use of

BSDL and ISC files during algorithm or data update.

2. Comparative Evaluation of Approaches

We have examined several different descriptions and mechanisms for the

storage and maintenance of configuration data for programmable devices. In

summary, they have the following characteristics:

134 The In-System Configuration Handbook

• JEDEC
o Contains configuration data only in ASCII readable form
o No algorithmic information

o Limited data compression capability

o Often adhered to as a data format only with different

vendors interpreting its contents differently

o Used primarily by device programmer manufacturers

• SVF
o Integrated data and algorithm in ASCII readable format

o No control flow in algorithmic description - straight-line

execution only

o Limited data compression capability

o De facto standard for interchange of boundary-scan data

flows.

o Widely supported and accepted

o Used primarily by boundary-scan tool developers, ATE
manufacturers and embedded systems programmers

• STAPL
o Integrated data and algorithm in ASCII readable format

o Basic algorithmic control flow

o Standardized data compression

o JEDEC standard but with limited support and accep-

tance.

o Used primarily by embedded systems programmers

• Java API for Boundary-Scan

o Separable data and algorithm using Java programming

language

o All Java-supported control flow mechanisms

o Standardized but extensible data compression

o Informal standard with limited support and acceptance

o Used primarily by embedded systems programmers

• IEEE STD 1532

o Separate data and algorithm using IEEE STD 1149.1

BSDL extension and new ISC data format

o Control flow limited to counted loops and loop on

condition

o Limited data compression

o Widely accepted IEEE standard with significant

momentum

IEEE Standard 1532 135

o Used primarily by boundary-scan tool developers, ATE
manufacturers and embedded systems programmers with

device programmer manufacturers looking into support

The systems designer must answer the question: “What will work best

for my application and me?" As you might expect the answer is not as

straightforward as might be desirable.

What is clear is that JEDEC should be avoided. This file format has been

too broadly interpreted to be useful. There is inadequate information in a

JEDEC file to complete device programming successfully. You will need

significant added information and guidance from the device vendor to use

JEDEC files effectively. You should avoid these files at all costs.

SVF files serve as the common interchange format of the in-system

configuration community now. Though simple, these files can describe all

devices effectively and with relative efficiency. Some devices, typically

those based on flash technologies, are not accurately describable using SVF
files. Vendors who supply these devices and claim to describe their

programming in SVF have proprietary interpretations of SVF or may require

you to buy specially sorted devices to guarantee correct configuration.

Although a formal JEDEC standard, STAPL remains closely associated

with Altera. Most other vendors still view it with some suspicion. Altera

remains the key proponent of the format. They still however produce STAPL
or SVF files from their applications to describe the configuration of their

devices. In addition, they support IEEE STD 1532.

Most users who have found STAPL useful are embedded system
programmers who use it to effect programming of their nonvolatile PLDs.
Run time memory remains an issue and depending on the interpreter that you
use, you may be limited to sequential device programming. As suggested
previously, this might be preferred, when updates are expected. The
available interpreters are good although those with a good programming
background may be able to make speedier and more efficient

implementations. This might be important for memory-sensitive
applications. Support for STAPL remains spotty, Altera is you best source
for answers on issues related to STAPL.

Java API for Boundary-Scan occupies a smaller niche. It has found its

sweet spot in Java s market space that of embedded or desktop internet-

136 The In-System Configuration Handbook

connected applications. Support for the API is limited; the author of this text

is the best source of answers on issues.

IEEE SID 1532 is rapidly gaining acceptance in the marketplace.

Support is being quickly rolled out. There is little dissonance among the

vendor community about supporting the standard so this bodes well for its

future. Because ot its broad acceptance and its IEEE standard status, there

are many points of contact for support. You should first approach the IEEE
STD 1532 working group. The IEEE web site contains contact information

for that group. Several implementations of kernels to interpret IEEE STD
1532 BSDL and data files are available. They have been successfully ported

to various embedded processor platforms.

The following table summarizes the sweet spots for each solution:

Table 7-1. Configuration Description Language Application Spaces

Solution ATE Embedded

Systems

Boundary-Scan

Tools

Device

Programmers

JEDEC NO NO NO YES
SVF YES MAYBE YES NO
STAPL MAYBE YES MAYBE NO
JAVA NO YES NO NO
IEEE STD 1532 YES YES YES MAYBE

Chapter 8

The IEEE STD 1532 Compliant Device

1. Introduction

We have now seen the software infrastructure that underpins IEEE STD
1532. Now we will describe what an IEEE STD 1532 compliant device

looks like to the end user.

2. Operating States

A device compliant with IEEE STD 1149.1 has two distinct operating

states. It is either in test mode and the boundary-scan register controls the

pin states or it is in mission mode and the device function controls the pin

states. This is pictured in Figure 8-1.

Figure 8-1. Operating Modes for IEEE STD 1 149.1 Compliant Devices

A programmable device that is compliant with IEEE STD 1532 (and

therefore, by definition also with IEEE STD 1149.1) overlays another two

states. It is either being programmed or it is in operation. It turns out that

The IEEE STD 1532 Compliant Device 139

when a programmable device is used in a system the states need more

refinement.

IEEE STD 1532 defines four such states that it refers to as the system

modal states:

• Unprogrammed - In this state, a device is either blank or

incompletely programmed.

• ISC Accessed - In this state, the device’s configuration memory

is being accessed for erasing, programming or reading

• ISC Complete - In this state, the configuration operations have

been completed but the device is not yet operational. The device

remains in this state as long as the ISC_DISABLE instruction is

loaded in the device’s instruction register. This allows controlled

sequencing of devices to the operational state.

• Operational - In this state, the device’s behavior is fully defined

by the programming patterns loaded into the devices

configuration memory.

A typical sequence of transitions is as follows. The device powers up

and is blank. It is therefore in the Unprogrammed modal state. According

to the standard, the programmable pins of the device should be floating.

Now the designer wants to program the device. Loading the

ISC_ENABLE instruction completes the transition to the ISC Accessed
modal state. Once in the ISC Accessed modal state, all operations that

access the device’s configuration memory can be completed. The
ISC_ENABLE instruction has one of two possible behaviors on activation.

The device’s programmable pins either float or clamp to values determined
by the contents of the boundary-scan register. The behavior of the pins is

pointed out by the ISC_PIN_BEHAVIOR attribute in the BSDL file.

Device erasure, programming and verification are completed in the ISC
accessed modal state. An IEEE STD 1532 compliant device will have a

special bit (or group of bits) programmed that signals the device has been
configured successfully. This bit is known as the ISC_Done. After
programming of the ISC Done bit, the device is ready for operation.

I he ISC_DISABLE instruction is loaded to prepare the device for full

operation. While the ISCJDISABLE instruction is loaded, the device is in

the ISC Complete modal state. When the ISC_DISABLE instruction is

displaced from the instruction register (by loading a BYPASS or other non-

140 The In-System Configuration Handbook

ISC instruction) the device transitions to the Operational modal state. The
device now takes on its programmed behavior.

A modal state diagram that more fully explains the transitions is included

as Figure 8-2.

ANY NON-TEST INSTRUCTION ISC_ENABLE ANY NON-TEST INSTRUCTION

Figure 8-2. IEEE STD 1532 Configuration Modal State Transition Diagram

3. System Pins

IEEE STD 1532 carefully describes a classification of system pins.

There are five pin types:

• Compliance Enable Pins - these pins are identical with the

compliance enable pins of IEEE STD 1149.1. These pins are

The IEEE STD 1532 Compliant Device 141

used with static deterministic logic state conditions to enable

device compliance with IEEE STD 1 149.1.

• Test Access Port Pins - these are the four pins of the Test

Access Port (TCK, TMS, TDI and TDO).

• Programming Voltage Pins — These optional special

programming voltage pins can be used to provide access for

over-voltage programming.

• Fixed System Pins - These are pins, earmarked by the device

designer, whose 10 functions are not determined by the

configuration information programmed into the device.

• In-System Configurable System Pins - These are pins, whose

IO functions are determined by the configuration information

programmed into the device.

Of all the pin types described above, only the In-System Configurable

System Pins are affected by the ISC_ENABLE instruction and described by

the ISC_PIN_BEHAVIOR attribute. These pins also remain three-stated

when the device is either erased or incompletely programmed.

Incompleteness is determined by the state of the ISC_Done bit. If

programmed then the configuration was completed if not the device should

look and behave like an erased device.

Fixed system pins are listed in the FIXED_SYSTEM_PIN attribute in the

BSDL file. All the other pin types are covered by the rules associated with

IEEE STD 1149.1 BSDL.

4. Algorithmic Operation

IEEE STD 1532 compliant devices have some strict rules to which they

must adhere in all configuration operations. These rules are key to allowing
the devices to work well in a system. They also allow concurrent algorithm
application to speed programming throughput.

4.1 Algorithm Steps and State Transitions

The basic algorithm step is as previously described. It is a group of four
steps consisting of an instruction load, an input data shift, a wait in Run
Icst/Idle and an output data shift. A sequence of algorithm steps is

performed to complete a configuration operation.

142 The In-System Configuration Handbook

The device cannot require any specific state trajectory be followed
between each step. For instance, the device cannot need a wait in Pause DR
between the data shift and the wait in Run Test/ldle. Conversely, it should
tolerate all valid transitions in performing the algorithm steps. Therefore, it

should allow a Shift DR to be interrupted by a visit to Pause DR and a

traversal back to Shift DR to complete the step.

The step that includes a wait time in Run Test/Idle is always required.

The instruction operations should be carried out in the Run Test/ldle state.

Devices should tolerate longer than specific waits without causing any
damage. This allows operations to be performed concurrently.

4.2 Algorithm Optimizations

Devices should also be tolerant of step optimizations made by the

applications software interpreting the BSDL files. This includes

optimizations of the following types:

• Deleting Redundant Instruction Loads - In situations in

which the same instruction is active for multiple steps, there is

no need to reload the instruction with each step. For instance:

Repeat 25

(ISC_PROGRAM 25:? Wait 10e-3 25:3*7)

Execution of this fragment need not repeat the load of

ISC_PROGRAM with each of the 25 steps. It can be loaded

for the first step and then the data can be loaded with

transitions directly to Shift DR. Schematically the flow looks

like this:

Shift IR: ISC_PROGRAM
Shift DR: Shift in 25 bits read from file.

Run Test/ldle: Wait 10 msec.

Shift DR: Shift out 25 bits test first three bits out against 3 hex.

Skip Run Test/ldle

Shift DR: Shift in next 25 bits read from file.

Run Test/ldle: Wait 10 msec.

Shift DR: Shift out 25 bits test first three bits out against 3 hex.

Skip Run Test/Idle

The IEEE STD 1532 Compliant Device 143

Shift DR: Shift in next 25 bits read from file,

etc.

• Interleaving Data Input and Output Shifts - In a multiple

step operation in which data must be both shifted into and out of

the device, the first output data shift can be interleaved with the

second input data shift. More generally, the Nth output data

shift can be interleaved with the N+l
st

input data shift. The

above example simplifies as follows:

Shift IR: ISC_PROGRAM
Shift DR: Shift in 25 bits read from file.

Run Test/Idle: Wait 10 msec.

Shift DR: Shift in next 25 bits read from file - Shift out 25 bits

test first three bits out against 3 hex.

Run Test/Idle: Wait 10 msec.

Shift DR: Shift in next 25 bits read from file - Shift out 25 bits

test first three bits out against 3 hex.

etc.

• Arbitrary ISCJVOOP insertion - Often, to get concurrent

operation to work, extra ISC_NOOP instructions may need to be
inserted in the algorithm flow. Devices should tolerate this

without causing the current operation to fail. For instance the

above flow should still work with ISC_NOOPs added as shown:

Shift IR: ISC_PROGRAM
Shift DR: Shift in 25 bits read from file.

Run Test/Idle: Wait 10 msec.

Shift I)R: Shift out 25 bits test first three bits out against 3 hex.
Skip Run Test/Idle

Shift IR: ISC_NOOP
Shift DR: Shift in NOOP bits

Run I est/Idle: Wait arbitrary time

Shift DR: Shift out NOOP bits

Skip Run Test/Idle

Shift IR: ISC_PROGRAM
Shift DR: Shift in next 25 bits read from file.

Run Test/Idle: Wait 10 msec.

Shift DR. Shift out 25 bits test first three bits out against 3 hex.
Skip Run Test/Idle

Shift IR ISC NOOP

144 The In-System Configuration Handbook

Shift DR: Shift in NOOP bits

Run Test/Idle: Wait arbitrary time

Shift DR: Shift out NOOP bits

Skip Run Test/Idle

Shift IR: 1SC_PR0GRAM
Shift DR: Shift in next 25 bits read from file.

etc.

Note the ISC_PROGRAM instruction must be reloaded each time after

the ISC_NOOP is loaded.

4.3 Proprietary Algorithm Support

Some devices may have algorithms that can be described using IEEE

STD 1532 BSDL but the devices lack compliant electrical features making

them unsuitable for concurrent operations or algorithmic step optimization.

These devices have the proprietary keyword associated with the procedures

listed in an action or the action itself.

4.4 Nullified Instructions

There is a provision in the standard for nullifying instructions. T his

occurs when an ISC instruction is loaded when a device is not in the ISC

Accessed modal state. Externally the ISC instruction behaves according to

the ISC_PIN_BEHAVIOR attribute but internally the operation (say,

ISC_PROGRAM) is not completed. In addition, there is no damage to the

device or its current programmed contents.

4.5 Interleaving Test and Configuration Instructions

The default behavior of IEEE STD 1532 compliant devices is that

transition between ISC and test mode instructions are allowed. This means

that you could interleave a test operation with an EXTEST. This might be

useful in situations in which EXTEST is used to access the functional pins ot

adjacent non-IEEE STD 1532 FLASH memory devices for programming.

These sorts of transitions between ISC and test mode may be risky to the

ISC device. The attribute ISC_ILLEGAL_EXIT is used to list the test mode

instructions that cannot be used during ISC operations.

The IEEE STD 1532 Compliant Device 145

4.6 Asynchronous Transitions to Test Logic Reset

Asynchronous transitions to Test Logic Reset using the TRST pin during

ISC operations are intended as a panic escape route. The device behavior is

similar to performing an ISC_DISABLE. Usually ISC_DISABLE has a

wait time associated with it. This may not be guaranteed if you assert the

TRST pin. In that case, the only fact known is the device will exit the ISC

Accessed modal state.

4.7 Device Operation Status Indication

The standard recommends that devices always return some operation

status information. The standard describes status as a reflection of the

mechanics of the configuration operation. This means that it signals whether

the device is in ISC Accessed state, suitable time was spent in Run Test/Idle

and valid data was supplied to the operation. However, it does not reflect

the success of the configuration operation itself.

According to the standard, any designer developed approach for status

collection (including none) is acceptable. However, the standard describes

one method that can be handled automatically by IEEE STD 1532

applications.

The specified method requires that all data registers have status bits

assigned in them. These bits can be queried by the application when the data

register contents are shifted out. The status bits must always be in the same
location - regardless of the active instruction. The minimum number of
status bits is two. The two status bits must be the first two bits shifted out

(the two least significant data register bits). The status code “10” says no
error has occurred and the code “01” says some error has occurred. The
other bit code patterns (“11”, “00”) are illegal. By choosing status codes
that are the inverse of one another and with a 0 and 1 pattern, electrical

issues can be easily detected.

Ihe status bits are detected automatically by application software and if

an error occurs, proc_error_exit is performed.

An optional status subcode field of arbitrary size can be used for the
device to provide added information about the failure signaled. T his cannot
he dealt with by applications automatically but applications should allow end
users to view the subcode contents using a captured data log.

146 The In-System Configuration Handbook

4.8 Device Operation Success Indication

To provide support for devices with non-deterministic configuration

algorithms, the device must be able to signal when it needs extra

configuration attempts. The operation success indication serves that role.

These indicators exist in addition to any operation status indication bits. The
operation success indication bits - unlike the status indication bits - do
reflect the success of the configuration operation itself.

These bit values need to be clearly tagged using the OST keyword in the

BSDL. This points out to the application that these bits signal whether a

location has been successfully configured. Consider this flow:

(ISC_PROGRAM 32:? Wait 10e-3)

loop min 10 max 100 (

(ISP_NOOP wait 10e-3 l:l:OST, 2:0*0)

)

The ISC_NOOP instruction is used to wait for the operation started by

the ISC_PROGRAM instruction to complete. The loop section of the flow

shows the success indication bit is the 3
rd

bit shifted out. The programming

will be complete when that bit is sensed as a logic 1 . The loop will continue

executing up to 100 times (indicated by max). If the OST specified bit is not

1 after 100 iterations it is an error condition. The min keyword shows that

OST bit need not be tested until the 10
th

loop iteration.

Interestingly, the standard also allows loops of this sort to be expanded to

their maximum specified number of steps. Doing this should not damage the

device. Note though that each step must be performed. Because the max is

specified to be 100, it is not accurate to say the loop statement:

loop min 10 max 100 (

(ISP_NOOP wait 10e-3 l:l:OST, 2:0*0)

)

equals:

(ISP_NOOP wait 1000e-3 l:l:OST, 2:0*0)

Rather it equals:

(ISP_NOOP wait 10e-3 l:l:OST, 2:0*0)

The IEEE STD 1532 Compliant Device 147

repeated 100 times.

5 . Summary

Adherence to IEEE STD 1532 is a contract. It means that users can

expect that designers have provided certain specific device behavior and

functionality. It also means that configuration application developers have a

good deal of functionality they too can provide.

Chapter 9

DESIGN CONSIDERATIONS FOR IN-SYSTEM
CONFIGURABLE SYSTEMS

1. Introduction

In this chapter, we will consider design rules for configurable systems. This

includes first figuring out the proper configurable device, then designing the

infrastructure for the device including wiring the signals and providing

suitable power. After that, we will examine considerations for integrating

test and configuration and explore the class of configurable system needed.

2. Device Selection Criteria

When trying to select a device suitable for use in a configurable system

there are many design considerations:

1 . IEEE STD 1 532 Compliance

a. Fail safety

b. Support of Concurrency

2. Power consumption during configuration

3. Configuration Speed

4. Endurance

5. Data Retention

6. Security

7. Reliability

8. System Boot Time

9. Initialization

a. After Power Interruption

10. Configuration Process Validation

Each of these matters will be discussed in sequence.

Design Considerationsfor In-System Configurable Systems 149

2.1 IEEE STD 1532 Compliance

You need to decide if the benefits of IEEE STD 1532 compliance are

important and valuable to you in the system you are designing. Briefly, the

specific benefits are multi-vendor device support including the ability of

doing concurrent device configuration.

Devices that fully comply with IEEE STD 1532 have ISC_Done meaning

that if power fails during configuration, devices will not power up in an

unsafe state. ISC_Done provides a high degree of system protection if

configuration fails or a power interruption occurs.

In addition, there is the benefit of a single data interface for all devices

using potentially a single application. Separating data and algorithm

information provided directly from the device manufacturer ensures a high

degree of confidence in the validity of the programming actions and

promotes simple update of either data or algorithm or both.

2.1.1 IEEE STD 1532 Compliant vs. IEEE STD 1532 Compatible

IEEE STD 1532 recognizes the capacities defined in the specification are

essential for the programming devices from multiple vendors on a single

chain. The standard therefore states that “A component conforming to this

standard shall comply with all rules set herein'

1

. This is not to be taken

lightly or confused with being compatible
,
a term suggesting that a device

may follow the standard but deviates in some ways that may be significant.

With the arrival of IEEE STD 1532, many manufacturers are bringing

out devices labeled as conforming to IEEE STD 1532. While usually this is

true, there may be significant deviations from the standard in a minority of

devices. The terminology accepted for these latter devices is that they are

IEEE STD 1 532 Compatible (that being a weaker form of compliance).

Device manufacturers typically identify the areas of non-conformance

that warrant the compatibility label either in their data sheets or in the BSDL
files. If not, an IEEE STD 1532 compliant device has the following

characteristics:

1 . It fully complies with IEEE STD 1 1 49.

1

2. Its configurable pins have predefined behaviors before during

and after configuration

150 The In-System Configuration Handbook

3. It does its "configuration work" while waiting in the Run
Test/Idle TAP controller state

4. It does not need any specific TAP state sequencing to

configure correctly

5. It fulfills the DONE functionality ensuring that partially

programmed devices will not "wake up" in a partially

functional state.

6. It can be ISC accessed concurrently with other IEEE STD
1532 device to improve system configuration throughput

The device BSDL files contain telltale signs of compatibility. The first is

the existence of the keyword proprietary in any algorithm description. This

disallows concurrent operation of these devices. Applications cannot make
algorithmic optimization of flows or actions sections marked proprietary.

This typically occurs when the device has an algorithm that is describable in

BSDL but does not conform to the strict requirements of IEEE STD 1532.

Another sign is the absence of a program-done flow, or having a program

done flow that is empty or contains only an ISC_NOOP. This is

characteristic of a device that does not have the “done’’ bit included.

Interrupted configuration of the device may therefore result in activating a

partially programmed device on power-up.

If a device has all IOs defined as system pins then a more subtle

deviation does not necessarily show mere compatibility. This means that

these pins do not have the expected float or clamped behavior during ISC

operations defined by the standard. A device of this sort is still fully

compliant with the standard but system pin states may change during

configuration. This puts the onus on system designers to take special care

when designing in these devices to avoid creating potentially damaging

conditions on the board during programming.

2.2 Power consumption during configuration

Although it is difficult to get the information about the power profile of

in-system configurable devices from the device manufacturers, it is worth

the effort to try to get some answers. In particular, it is important to

understand if the device has any unusual power needs during erase,

configuration or start-up.

Design Considerationsfor In-System Configurable Systems 151

Most manufacturers will provide you with information about the power

consumption of their devices after configuration but few will provide you

with information about the device power needs during ISC. Often, this is

because such numbers are difficult to define usefully. They may also be

difficult to predict, as they may be design dependent.

The typical volatile device does not have any unusual power needs

during configuration. In fact, the device is likely to need less power during

configuration than during normal system operation.

The same is not true of nonvolatile devices. These devices must

typically enable various on-chip charge pumps during configuration. In

addition, depending on the technology used and the techniques applied to

effect erase and programming, there might be a high current need during one

or both of the erase and program operations.

You should be acutely aware of the power needs of the selected device

during configuration. If your system is power sensitive, you should explore

the use of volatile programmable devices with a nonvolatile store. This store

could be a separately powered system (a remote disk or other network store)

or a flash memory with an interface suitable for configuring the volatile

devices at power-up. However, before converting to a volatile device, you

should engage in a careful examination of its power-up profile. It is not

always the case that volatile devices use less power at start-up.

2.3 Configuration Speed

Depending on your system start-up time budget, you may need to

examine the overall configuration time of each device. Typically, the

configuration time consists of two parts. The first part is the time to shift in

the configuration data (and any extra time to shift in the instructions and set-

up information). This maximum configuration clock (TCK, usually)

frequency typically fixes this time. The second part is the “burn” times

associated with the various configuration operations like erase, program and
read.

For nonvolatile devices, it is usually the case that bum times contribute

the most to the overall configuration times. For volatile devices, it is usually

the case that configuration data shift times are the key contributor.

Doing the configuration operations concurrently can mitigate the overall

cost of configuring nonvolatile devices. In the ideal case, concurrent

152 The In-System Configuration Handbook

configuration brings down the overall configuration time for many devices

to the configuration time for a single device. This will only be the case if the

configuration data shift time is at least ten times smaller than the bum times.

When using volatile devices, you must remember to consider the

configuration time for the nonvolatile store associated with the devices.

When using nonvolatile devices, the configuration time is paid only at

initial device programming or update. After that, the device will be

functional from system power application.

2.4 Endurance

The power of in-system configuration lies within the ability to

reconfigure the devices. Endurance is the number of erase and program

cycles a device can withstand and still hold its configuration. This is

typically an issue only for nonvolatile devices.

At a minimum, devices should allow 100 such cycles. Most devices

available today offer many more erase and program cycles than that.

The endurance number is important for field-upgradeable systems. It

contributes to estimation of the upper limit of the lifetime of the system. It

also can help dictate the update strategy. For instance, if the endurance is

large (say, 1000 cycles), it may be easier to reprogram all devices during an

update even if only one of them changes. If the endurance number is small

then each update may significantly reduce the lifespan of the system so only

changed devices should be reprogrammed.

2.5 Data Retention

Clearly, the worst case is your system “forgetting" what it is doing

during operation. Data retention is the measure of how long a device, once

programmed, will keep its programmed data. This limit applies only to

nonvolatile devices. While powered, volatile devices keep their program

store. Therefore, in designing your system you need to be aware of the

estimated product lifetime and choose device that matches it.

Nonvolatile devices should typically provide 10 years of data retention.

It is usual for this value to be much longer.

Design Considerations for In-System Configurable Systems
2.6

Security

153

One of the security problems that volatile devices have that nonvolatile

devices don’t have is separate storage of the bit stream. A competitor could

intercept the bit stream while it is being transferred to the target device and

then put it into another device. Nonvolatile devices only have this issue

when they are being remotely upgraded in the field since there is otherwise

no bit stream to intercept. An available solution to this problem for some

volatile devices is the use of encrypted bitstreams. In this situation,

encrypted bitstream configuration data is delivered to the device. The keys

for decrypting the configuration data are preprogrammed into the target

FPGAs. The currently available solutions need a battery to keep the

programmed encryption key alive even if the power goes out.

2.7

Reliability

Obviously, the selected device needs to be reliable. It needs to configure

easily and correctly every time. During manufacturing configuration, it is

usual for some devices to fail. Causes that contribute to configuration

failure include surrounding electrical noise (for example, from testers or

other equipment), device handling (for example, static discharge issues) and
even improper device placement on your target board (for example, a rotated

chip). This fallout, however, should be small; less than 0.5% is typical.

Smaller values are also likely.

It is difficult to get reliability values from manufacturers since too many
of the issues that cause fallout are outside their control. You will have to try

to get this information chiefly from the experience of others in the field.

Sometimes conference papers provide an idea of the typical manufacturing
fallout of programmable devices in specific circumstances.

2.8

System Boot Time

The system boot time may include a significant part related to the
configuration time. This depends on the total number of programmable
devices and the use of concurrent configuration techniques. Simply stated:
the whole is the sum of the parts.

154 The In-System Configuration Handbook

The time to reboot may also be different depending on the shutdown
sequence that preceded it. For instance, if the main-system board remained
powered up but the end user station did not, then the boot time may consist

only of restarting the system software.

Consider an application in which all the programmable devices are

nonvolatile. The boot time consists only of the time needed to start the

system software once nonvolatile device configuration completes. If the

system shuts down normally, then the following boot time consists only of

the system software start up time. Restart after a catastrophic shutdown, like

a power outage, will likely need device configuration integrity check,

followed by device reconfiguration, followed by a system software start-up.

Some systems may need to use a nonvolatile device to sequence and

control the boot-up of volatile devices.

The portion of the boot time needed by configurable devices is an

essential part of your start-up time budget.

2.9 Configuration Process Validation

You must consider the process that manufacturing and field personnel

use to configure a system. With programming techniques, other than IEEE

STD 1532, it is common for the device design data to be converted to

several intermediate forms before use by the configuration tool. Depending

on the circumstances (that is, prototyping, manufacturing, or field upgrade),

different data formats may be used.

For example, a JEDEC file may be converted to SVF and then converted

to a proprietary device programming language for performing configuration.

To complicate the matters, this process may be different for each vendor of a

configurable device that is on a board. Assuring that each operation is

performed correctly and results in the correct configuration data being

programmed in to the correct device can be a logistical challenge. This is

further complicated when a design needs to be updated.

This is one major reason to select IEEE STD 1532 compliant devices.

Configuration using the IEEE STD 1532 compliant vendor design files

directly as input for the configuration procedure can simplify the flows

significantly. The IEEE STD 1532 ISC data file also can contain CRC

values to help in assuring and identifying versions.

Design Considerations for In-System Configurable Systems 155

3. Signal Layout Considerations

The device manufacturers specify configuration performance at the

device pins. In-System Configuration tool vendors specify configuration

performance at the connections to their systems. It is helpful to ensure that

these two are compatible with one another. The following guidelines will

help in the design of the layout of components, boards and systems.

Figure 9-1. Serial Chain of IEEE STD 1 149.1/1532 Compliant Devices

The four pins of the boundary-scan TAP consist of two serially

connected signals and two parallel-distributed signals. The optional and
rarely used fifth pin is I RST. 1 he TRST pin activates an asynchronous TAP
state machine reset. The TAP state immediately transitions to the Test-

Logic-Reset state. One reason devices rarely have TRST is that driving
TMS high for five pulses of TCK also resets the TAP state machine.
Another reason is that, for reliability reasons, the designer may be needed to
remove the possibility of transients accidentally resetting devices during
operation. When present, you must connect all I RST signals together. l ake
special care to pull 1 RS I high using a resistor during normal operation.

Wiring to the two serially connected signals, TDI and T DO, should be as
short as possible. That is, connect each device TDO direct to the succeeding
device s I DI with a minimum of extra routing. Even though the signals may
be slow when compared with the system signal speeds, too much routing
will cause excessive loading and could result in having these signals missing

156 The In-System Configuration Handbook

the rising edge of TCK. Slow rising signals in CMOS circuitry are subject

to noise and increased current consumption. These effects further degrade

robustness.

The two parallel-distributed signals are TCK and TMS. TCK is a clock.

Typical TCKs run in the range of several to several tens of megahertz. Once
again, these signals may seem slow when compared to the system signals

speeds. This, however, is not a reason for ignoring correct distribution and

layout rules for these signals. Clock signal energy splitting and reflections

can occur on badly laid out clock lines regardless of the operating frequency.

This can cause sharp clock edges to become stair steps with ringing noise.

When delivering TCK to more than 4 to 6 devices it is wise to use a clock

tree to ensure delivering TCK edges is correct and synchronized at all

devices. The TAP controller state machine is a synchronous state machine

controlled by TCK and the correct operation of the entire chain relies on that

fact that all devices are in the same state simultaneously.

Sampling the TMS signal occurs on the rising edge of TCK. The state of

TMS then decides the TAP controller state machine’s next state transition.

TMS must arrive at all devices in time for TCK’s rising edge to sample its

state correctly. For these reasons, you should treat TMS like a slow clock.

TMS therefore should use the same style distribution network as TCK.

The chosen clock-tree design, should seek to reduce clock skew and

design clock buffers to meet skew specifications and lessen clock-tree power

dissipation.

http.V/archives. e-insite.net/archives/ednmag/reg/1 997/03 1497/cs fgl .htm

http://archives.e-

insite.net/archives/ednmag/reg/ 1 997/03 1 497/cs fg2.htmThe three most

popular clock-tree implementations are:

1 . The H tree

2. The Clock Grid

3. The Balanced Tree

Custom layouts use the H tree approach. In this approach, you vary the

tree interconnect-segment widths to balance skew throughout the system. As

drawn in Figure 9-2, black dots mark the clock drivers. The clock driver

placement ensures the drive across the horizontal ot each
MH"-shaped route

is balanced and correct for the segment. No clock driver powers more than

two other clock drivers. Similarly, no clock driver connects to more than two

clocked elements. The boxes in the diagram indicate the clocked elements.

Design Considerations for In-System Configurable Systems 157

Figure 9-2. The H Tree

I he clock grid is the simplest clock-distribution network and has the

advantage of being easy to design for low skew. However, it is area-

inefficient and, even worse, power-hungry because of the large amount of
clock interconnect it needs.

As shown in Figure 9-3, the clock grid overlays the system with a grid to

allow wide distribution of the clock signal. Large clock drivers (as indicated
by the black dots) are arranged across the grid. Not shown in the diagram is

the manner in which the grid is supplied the clock. Typically the clock is

driven into the center of the grid by a single source. Depending on the size
of the system grid, it may be necessary to have a secondary or tertiary grids
to distribute the clock to the system grid. The secondary and tertiary grids
look like H trees overlaying the grid. It is clear and obvious how this can
quickly become a power and area hungry solution.

158 The In-System Configuration Handbook

CLOCK DRIVERS
CLOCK GRID

Figure 9-3. The Clock Grid

The balanced tree is the most common clock-distribution network. It is

shown in Figure 9-4. A balanced tree without buffers is one in which the

clock lines' capacitance increases exponentially as you move from the leaf

cell (clocked element) to the root of the tree (clock input). The extra

capacitance results from the wider metal needed to carry current to the

branching segments. The extra routing also results in added area to house the

extra clock-line width. Adding buffers at the branching points of the tree

(depicted by dots in the Figure) significantly lowers clock-interconnect

capacitance, because you can reduce clock-line width toward the root.

Design Considerationsfor In-System Configurable Systems 159

Figure 9-4. The Balanced Tree

4. System Power Considerations

Depending on whether you configure one device at a time or are using

concurrent programming to speed system configuration you will need to

ensure that your system power supply is able to provide the necessary device

power. In particular, programming a single device at a time rarely strains a

system power supply but programming a group of devices concurrently may
exceed the capacity of your system power supply. Consider the condition in

which devices begin functioning in mission mode immediately on

completion of configuration. Suppose a single device has a high current

need for configuration, then the sum total of the configuration current need

and the mission mode current requirement may exceed the maximum
capacity of the system power supply. In addition, sudden large

configuration power demands may need special board ground impedance

design to handle the current spikes to avoid spurious noise.

You might be able to use a special external supply during manufacturing

to provide the necessary current. But, if you are planning on updating your

system in the field, the system power supply will have to perform to the

160 The In-System Configuration Handbook

specifications associated with providing the peak current needed to

configure a group ot devices concurrently.

Another alternative that does not need a larger power supply is not to

allow execution of field upgrades using concurrent operations. This
approach might increase system downtime during configuration updates, but

it reduces the power requirement.

A further constraining alternative is to configure devices one at a time

and to hold back starting up devices after configuration. Then start them
only after all devices have configured. This guarantees the power needed is

always less than the system need when running in mission mode.

If during power-up, the system powers the buffers controlling TCK, TMS
and TDI after the target circuit then extra transitions on these signals may be

produced. This can initialize the TAP state machine in an unexpected state.

One way to correct this is to begin all TAP operations with a TMS controlled

transition to Test-Logic-Reset.

5, Device and System Test Considerations

You should also carefully consider the ability of the device to

complement your system test needs. If you intend to perform interconnect

test using boundary-scan you will want to make certain that devices are fully

IEEE STD 1532 compliant since they are then also fully IEEE STD 1 149.1

compliant. If you are planning on doing some device testing as well, you

will want to make certain the selected devices support the IEEE STD 1 149.1

INTEST or RUNBIST instructions or some proprietary equivalent.

It also possible to use the EXTEST instruction coupled with the

boundary-scan register of some devices to program commodity flash devices

that are not strictly in-system configurable. Some IEEE STD 1532 devices

allow you to interleave these EXTEST operations with their own ISC

operations. This interleaving of work can allow for faster overall system

configuration times. Devices that allow interleaving of EXTEST with ISC

operations will not have the ISC_ILLEGAL_EXIT attribute defined, or il

defined, its instruction list will not include EXTEST.

Sophisticated test applications may also be able to interleave interconnect

test and configuration actions.

Design Considerationsfor In-System Configurable Systems 1 6

1

You might plan to use the programmable devices in your system as test

and diagnostic hardware at power up. To do this they must reconfigure to

their mission mode function after successful test completion. You will also

need to ensure the test and mission roles are complementary and don’t make

different and conflicting demands of the system under test that would make

this dual functionality impossible to realize.

6. System Configurability Considerations

What class of configurability does your system design include?

1 . Prototyping Configuration

2. Production Configuration

3. Field Upgradeable

4. Bi-configurable (at boot time, diagnostic and test and then

mission mode)

5. Functionally Reconfigurable at run time

6. Medley Reconfigurability

In this section, we will examine the system design considerations for

each of the mentioned classes of configurability. We will examine these by

examples in Chapter 7.

6.1 Prototyping Configuration

This describes a system configured only during system development and

prototyping. This means allowing rapid access to configurable devices to

reconfigure each with new designs as bugs are found and fixed. It is also

likely the configuration port may be used for debug access. There may be

no later reconfiguration need.

A system of this sort will likely have a port available for configuring the

devices on the system. This port will be on the system printed circuit board

and may be a separate connector. This port, however, may not be accessible

after the prototyping as the connection hardware may be removed from the

board for production.

The design of the system will not necessarily involve anything more than

making certain that all necessary configuration control signals arc available

at the board edge. The signals are made available by a connector which

162 The In-System Configuration Handbook

mates easily with the system performing the configuration. This could either

be a programming cable or a stand-alone programming station.

6.2 Production Configuration

This describes a system configured only once during manufacturing.

This might mean loading the system with geographically selected or feature

set limited programming patterns. A part of the production flow is setting

the exact system configuration. The configuration never changes afterwards.

Therefore, there is no later reconfiguration need and the system design does

not allow it.

A system of this sort will likely have a port available for configuring the

devices on the system. This port will be on the system printed circuit board

and may be a separate connector. However, this port may not be accessible

after the product packaging.

The design of the system will not necessarily involve anything more than

making certain that all necessary configuration control signals are available

at the board edge. The signals are made available by a connector that mates

easily with the system performing the configuration. This could either be

automatic test equipment, a programming cable or a stand-alone

programming station.

6.3 Field Upgradeable

The field upgradeable class of reconfigurable systems describes a

manufacturing-time configured system whose design allows for irregular

updates after placement in the field. The expectation is there will be limited

updates, perhaps performed once or twice a year at the most.

The nature of the expected field upgrades is important to understand. For

instance, is the expectation that a service engineer will carry out upgrades in

the field? Will the service engineer have sophisticated equipment equivalent

to a laptop PC? Alternatively, will the service engineer only have a

handheld system of limited functionality? On the other hand, will they only

have an upgrade disk? Will there be a wireless interface to the system?

Will access be limited to the four pins of the IEEE STD 1 149.1 TAP? If

so, the designer may need to ensure the TAP can control that certain non-

boundary-scan devices if they interfere with system configuration.

Design Considerations for In-System Configurable Systems 163

Will a central office carry out the field upgrade? If so, is a service

engineer expected to be present at the site?

The simplest approach to field upgrade is to reload all device

configuration files regardless of change when any one needs to be updated.

This makes the procedure simple but may demand added endurance from the

devices since the total number of erase and program cycles will be equal to

the total number of changes expected to all device contents in the system.

These variations on the theme of field upgradeability have direct

ramifications on the design of the system.

6.3.1 Field Upgradeable - Service Engineer

The presence of a service engineer equipped with a PC means the system

need not have its own configuration controller. In fact, this system is a

variation on the production-configured version above except the

configuration port needs to be accessible to the service engineer. The easiest

way to do this is to make the port accessible by a service door on the system.

6.3.2 Field Upgradeable - Remote Control

If the system needs remote upgrade, there will have to be a processor

available to act as a configuration controller and manage the configuration

data reception.

This may be a dedicated processor or it may merely be a service function

of the main processor. Since the role is unlikely to used often, if you are

using a dedicated processor, it ought to be an inexpensive processor.

Another possible variation is to use a processor to manage the

communications with the remote site and a dedicated core or assembled
logic to read the configuration data out of a memory store and apply it to the
devices. I he memory store could be a flash memory or other suitably sized

nonvolatile store.

With remote control field upgrade, it is usual to introduce the new
configuration information in a stepwise fashion to ensure there is always a
working back-up configuration available. This means that two memory
banks need to be available. The first is the active bank. This bank stores the
configuration data used to program the target system. The second is the
auxiliary bank. This receives the updated configuration data. After data

164 The In-System Configuration Handbook

receipt, the configuration controller confirms the data integrity typically

through use ot a CRC check or checksum. The system then uses the

auxiliary data bank as the configuration data source bank. If there is any
problem detected in receiving the new configuration data, the system sends a

message to the central office. The active bank then remains unchanged. If

configuration controller confirms the updated configuration data as correct

then it configures the system using the new data. When the configuration

controller corroborates that system configured correctly (and potentially tests

that it works correctly), it sets the auxiliary bank to be the active bank. It

then sets the previous active bank as the auxiliary bank and erases it. It may
also choose simply to leave the previous active bank contents untouched. If

the system either did not configure correctly or did not work correctly after

the update, the active bank remains as the system function and configuration

controller sends a message to the central office.

The frequency of reconfiguration of field upgradeable systems may be as

often as once every three to six months or as rarely as once every few years.

It may also be the case, that reconfiguration of field upgradeable systems

occur more often early in their life cycle and more rarely later in their life

cycle.

6.4 Bi-Configurable

This bi-configurable style of system is one that has two distinct

configuration phases on power-up. The first is setting the system to perform

self-test and potentially diagnostic functions. When completed successfully,

the system reconfigures itself to perform its intended mission function.

A central office usually oversees this system. Ideally when the

diagnostic fails, the system alerts the central office to schedule repairs.

A system of this sort has two sequentially activated configuration

images. The first is the diagnostic image; the second is the mission image.

The system loads each image, one at a time. The system loads the

diagnostic image and runs it. The system reports failures either to a console

or directly to the central office. If the diagnostic passes, the system loads the

mission image and starts.

This system needs a configuration controller but it need not be a

microprocessor. A simple sequencing state machine may be enough to step

through and perform the necessary operations.

165Design Considerationsfor In-System Configurable Systems

At boot time or power-up, there will be two reconfigurations of bi-

configurable systems. One configuration will set up the diagnostic role and

the second will set up the mission role. These reconfiguration steps will

each occur one after another and the interval between the two configuration

steps will be just a few minutes. After that, no further reconfiguration will

take place.

Since bi-configurable systems may perform diagnostic or other debug

functions, available test functionality, including IEEE STD 1149.1

compliance, may be critical.

6.5 Functionally Reconfigurable

In a functionally reconfigurable system, configurability is an essential

part of the system functionality. As the system runs, it is either constantly or

at regularly reconfiguring itself as a part of normal operation.

An example of this class of system might a digital signal filter that

constantly adjusts itself according to the conditions of the input signal.

Some systems of this sort reconfigure themselves by watching input

signal data and output signal data. Then, based on the needed accuracy and

shape of the output signal, an algorithm calculates the new configuration

memory contents and then streams the result directly to the configurable

device. In this manner, the system is constantly adjusting itself to produce

better output. Systems of this sort are also known as dynamically

reconfigurable systems.

Researchers developed systems that use techniques like this to learn what

to do and dynamically adjust their configuration until they converge on the

wanted functionality.

Another example of this system is one that uses a central processor to

watch the data processed. Then based on the data passing through the

device, the processor selects from various available configurations in a

library and then configures the device (or a portion of it) to handle the data

correctly.

You could imagine a communications switch built using this approach
that watches the input signal data for specific communications protocols. On
identifying a new incoming protocol, the system reconfigures on the fly to

handle the incoming data properly.

166 The In-System Configuration Handbook

Yet another example of functional reconfigurability, is using it to provide
added system security. In this circumstance, a central office upgrades
systems often to accept new protocols or security keys to deter piracy.

One can imagine many other variations of this class of application. What
is common to all is the system must reconfigure itself during operation to

work correctly. The frequency of reconfiguration is as high as few

milliseconds or as low as every few hours.

6.6 Medley Reconfigurable

Systems that are “medley” reconfigurable take a little sample of each of

the variations and mix them according to needs. It is possible, for instance,

to develop a system that is Bi-Configurable and field upgradeable or a

system that is functionally reconfigurable but only production configured.

This allows for developing systems that take some of the features and

benefits of each variation by delivering a new reconfigurable system.

An example of a medley reconfigurable system is an application that

stores separate functional configurations, all of which are programmed

during production. Some time after production a technician sets up the

needed configuration, perhaps by setting jumpers or switches just before

product ship. Consider a VCR that targets North America, Europe and Asia.

At production time, the electronics for processing each geographic locale is

programmed into the system. It will never be upgraded so the design

incorporates production configuration only. Just before the VCR ships to its

end-market, a technician sets some switches or jumpers to adjust the system

application. This makes it field upgradeable as well. In this case, though, it

is upgradeable once and from only a finite set of choices.

7. Summary

In this chapter, we introduced the essentials of reconfigurable devices

and systems. In the following chapters, we will build on this information to

see how existing applications and tool sets use this configurability. Then we

will further examine how these tools and techniques can help simplify

developing the variety of reconfigurable systems described.

Chapter 10

IN-SYSTEM CONFIGURATION-BASED
PLATFORMS

1. Configuration Environments

Configuration of a system has a life cycle like any other entity. A
configurable system is likely to exist in many different environments during

its design, development, manufacturing and deployment. Each of these

environments pose significant and often different and contradictory sets of

expectations and feature needs.

In this section, we will examine the variety of operating environments

and the applications available to support them as well as the demands made

on the configurable system itself.

1.1 Prototype

The prototyping environment is the product development and debug

environment. During prototyping, rapid and almost continuous

reconfiguration is the norm. The work environment is a laboratory or a

workbench. The developer is likely working in an electrically noisy and

chaotic environment. Designers expect problems (including configuration

problems) during development and debug but obviously, they prefer error-

free and successful execution. As development continues, problems related

to configuration should disappear. As a prototype, the system may have

many jumpers and may need changes to make it operable. Changes include

cutting traces on the printed circuit board, adding capacitors and resistors to

nets and adjustments.

While prototyping, the designer is in control. Hie designer tocuses on

getting the system to work. After the system works, the designer will have

to revisit the adjustments made and decide how to incorporate them in the

final design.

In-System Configuration-Based Platforms 169

A typical designer focuses only in configuring the devices that form the

portion of the system for which they are responsible. A simple configuration

tool running on a PC and using a vendor-supplied download cable would

probably be enough.

1.2 Manufacturing

The manufacturing environment needs the system to have guaranteed

configurability. The configuration data must be stable and available.

Configuration should work first time and every time. There must be no

fallout owing to configuration problems. There is some small amount of

adjustment allowed to the environment to make up for limitations. This

might include slightly higher supply voltages, supplies that are more

powerful, more noise resistant cabling and the like. These adjustments,

however, may be problematic if the system is field upgradeable since the

field-operating environment may not allow for these compensatory

measures.

Product engineering is in charge during manufacturing. The product

engineer focuses on making sure the yields are high and the throughput (that

is, the number of units produced and tested each hour) maximized. In other

words, minimizing the production cost.

System assembly occurs in the manufacturing stage. This system may
contain devices from many different manufacturers. All the devices will

need configuration. Device configuration needs a reliable tool set that is

immune to production floor noise. Obviously, manufacturing wants support

for configuration of all manufacturers’ devices. Simplicity is important for

production to be efficient. Cables used to download device configurations;

these cables should support all devices. You do not want to have a condition
in which production must stop to change cabling to configure a new device.

It is also the case that during production, use of a single integrated

configuration step increases overall throughput. This suggests running
integrated test and configuration steps on automatic test equipment (ATE).
Ideally, the integrated approach should yield a single file or program that

carries out all test and configuration operations.

170 The In-System Configuration Handbook

1.3 Field

When releasing a system to the field with the likelihood of eventual field

upgrades high, the upgrades must occur without failure. The configuration

environment is the run-time environment of the system. There is no
possibility of changing this environment or making up for any limitations or

irregularities.

This means designing the system to ensure that upgrades are possible and

reliable. This might be in conflict with minimizing the production cost.

This will be offset though by the extended lifetime of the system and the

reduced maintenance costs associated with the product.

2. PLD Manufacturer Tools

Every programmable device manufacturer provides some application

software for device configuration. PLD manufacturers typically provide this

software free. A PC version is always available. The applications are also

often available for UNIX workstations and Linux support is now emerging.

Users must however buy a specially designed download cable to configure

devices. These cables typically retail for between $100 and $500.

Download cables are available to connect to a PC parallel and USB port as

well as serial ports.

Device manufacturer supplied download cables are incompatible with

one another. This means that one manufacturer’s download cable is not

usable with another manufacturer’s download application. It is also true that

a jig designed to connect to one manufacturer’s cable pin out will not

correctly connect to another manufacturer’s cable. Please note that

manufacturers do provide flying lead connections for their cable heads but

this makes the cable to target connection mechanism more difficult.

In addition, unless an application supports IEEE STD 1532-based

configuration, you will need to use a different application for each different

manufacturer’s device used in the design. In the worst case, this means that

several different applications, download cables and cable-to-system

connections will need to coexist if you are using multiple manufacturer

devices.

Manufacturer-provided solutions are likely to be ill suited for use in a

manufacturing environment. The design ot the download cables is rarely

In-System Configuration-Based Platforms 171

able to withstand the needed number of reconnections and strain leading to

the cable simply wearing out. There may also be a significant susceptibility

to surrounding electrical noise.

For use as a field upgrade tool, manufacturer-supplied applications need

a PC and the associated download cable. This might not be suitable if you

do not have system access to the cable connection point or if taking a PC to

the field location is not possible.

Manufacturer tools are typically your only source for the generation of

intermediate file formats like SVF or STAPL. If you are using some third-

party systems like certain PC-based boundary-scan tools or ATEs for device

programming, you may need to use SVF or STAPL as input to describe the

configuration algorithm and data. If these systems do not accept IEEE STD
1 532 BSDL and ISC data files then typically one of these alternative formats

are supported.

2.1 PLD Manufacturer Specialty Tools

In the time before IEEE STD 1532 and without a standard, some vendors

proposed their own approaches to solve end user needs. There was a vital

need for an efficient embedded system programming solution. While IEEE
STD 1532 makes these approaches obsolete, there is a large installed base.

Some end users will continue to use these approaches in existing systems.

2.1.1 XilinxXSVF

As already noted, SVF files have two basic weaknesses. First, they can
get large because the data is represented in ASCII HEX. Second, they
cannot represent algorithmic control flow.

Ihese two issues loomed large for Xilinx when they needed to provide a

configuration solution suitable for use in embedded systems. To resolve this

problem, Xilinx created what was essentially a binary encoded version of
SVF called XSVF (presumably to mean Xilinx SVF). The format took the
basic SVF command set and encoded the data in binary. As well, several
Xilinx-specific extensions were included that optimized the data
representation. This included a record that understood the address format of
Xilinx’s CPLDs to allow for software increment, a record that understood
the device s return status to enable a retry mechanism and built-in
assumptions about state transitions. To support this, Xilinx provided a

172 The In-System Configuration Handbook

translator that took SVF tiles for Xilinx devices and translated them into

XSVF. Xilinx also provided a small C code interpreter of XSVF files. This

interpreter was less than 10 kilobytes in size after compilation and proved to

be useful in embedded systems.

The approach provide to be popular and the applications note and its

associated software quickly became one of the most popular downloads from

Xilinx ’s web site. Users could configure Xilinx-based systems (bypassing

other vendor devices) using TAP access and a simple microprocessor. There

was a limited run time overhead and. shift speed limited only by the

processor used to drive the TAP pins.

The solution is tuned and tested with Xilinx devices only (CPLDs,

FPGAs and PROMs). Although technically, simple SVF files produced by

manufacturers other than Xilinx should be usable in this flow, there has been

little publicized effort to prove or disprove this theory. Therefore, for

practical purposes this solution remains applicable only to Xilinx devices.

2.1.2 Lattice Semiconductor ispVM

After the introduction of STAPL, the development of the JAPIBS and

while IEEE STD 1532 was still in the definition stages, Lattice

Semiconductor proposed a new approach. This approach sought to combine

the best characteristics of STAPL and JAPIBS and support IEEE STD 1532

when completed.

The basic idea was to build a solution using virtual machine technology.

Rather than employ the Java virtual machine that included general purpose

computing support, a smaller one could be realized by limiting the

requirements to simpler operations of in-system configuration. This became

the ispVM.

The entire ispVM assumes that device algorithms are described

completely and effectively in SVF. The SVF description is then compiled

into a byte code format. The byte code can then be run on any ispVM

implementation. Alternatively, applications that are ispVM byte code

“aware” can produce the device programming algorithm in ispVM byte code

directly.

In-System Configuration-Based Platforms 173

Lattice Semiconductor built two significant applications based on ispVM

technology. One is the ispVM System Software. This provides a complete

environment in which to execute and debug SVF files (after their translation

to ispVM byte code). It also accepts IEEE STD 1532 BSDL and ISC data

files (that adhere to the 2001 version of the standard) and allows direct

execution. It does this by first compiling them to byte code.

The drawback of this approach is that some devices do not have

algorithms that can be described in SVF (as we have already discussed). In

addition, with the approval of the 2002 version of IEE STD 1532, devices

with non-deterministic configuration algorithms can be described. Devices

of this class cannot be supported in ispVM as it is defined.

A second serious drawback is the details of the ispVM byte code format

are not available to the public. This means that independent

implementations of the ispVM cannot be developed. It also precludes

generation of optimized byte code descriptions of algorithms. The only path

to ispVM byte code is SVF files compiled by Lattice's tool set.

2.2 PC-based Boundary-Scan Tools

As the need for stand-alone, low cost boundary-scan test and debug
stations increased, several suppliers arrived on the scene. These suppliers

developed applications that use their own algorithms and hardware to

perform IEEE STD 1 149.1 -based system test and debug.

When IEEE STD 1532 began to expand, these same vendors extended
their IEEE S I D 1 149.1 support to include in-system configuration based on
IEEE STD 1532. By integrating in-system configuration solutions with their

boundary-scan tools, these vendors provide an in-system configuration, test

and debug solution. They usually make available “in-system configuration-

only" applications as well.

Ihese applications support all manufacturers’ devices through a single

download cable (designed and made by the application developer). Most
application developers also have TAP controller modules in various form
factors from PC plug-in cards, to VXI bus cards, to USB and Ethernet
interface modules. These provide much design flexibility and portability.

Unfortunately, these systems and their associated hardware are not free.

I hey can cost several thousand dollars for each license. These solutions do
however provide a single source, multi manufacturer solution with high

174 The In-System Configuration Handbook

throughput suitable for a manufacturing environment. If you already own a

system like this for manufacturing test, then the only cost is the incremental
cost of buying the configuration software.

To complete the configuration solution, most vendors offer add-ons that

will configure on-board flash memory using the boundary-scan registers of
surrounding devices.

This latter feature coupled with IEEE STD 1 149.1 test, IEEE STD 1532

in-system configuration and debug may provide a satisfactory manufacturing

solution. Where access to nets internal to the board is needed to

precondition the board for boundary scan operations, the PC based

boundary-scan tools may not be acceptable. Because these applications need

nothing more than a PC to work, designers can use them during prototyping.

Once again, this solution is not suitable in the field without system access to

the cable connection point or if taking a PC to the field location is not

possible.

3. Automatic Board Test Equipment Tools

There are several suppliers of in-circuit and automatic board test

equipment, also known as ATE. This specialty equipment does loaded

board testing of electronic systems. Loaded boards are boards populated

with parts. Most ATE support IEEE STD 11 49.1 -based testing of these

target systems. Similar to PC-based boundary-scan tools, ATE
manufacturers have also extended their IEEE STD 1149.1 tool sets to

include IEEE STD 1532 support.

Certain challenges that exist for IEEE STD 1149.1 support are,

sometimes, more acute when supporting IEEE STD 1532. The primary

issue is that of tester memory. ATE works by streaming vectors stored in

memory associated with each pin on the tester, to an associated pin on the

board under test. In many systems, this memory is the pin memory. One or

more bits represent the state of stimulus driven from the pin memory into the

board under test at any instance in time. Test programs usually have stimuli

spread evenly across all pins resulting in rather balanced use of ATE
memory. ATEs assign pin memory evenly across the test head. This

arrangement is functionally depicted in Figure 10-1. The typical ATE vector

memory is termed to be wide and shallow. This allows it to service many

pins and stream a few thousand vectors to the board under test. This is

typically sufficient to complete functional test of a complex system.

In-System Configuration-Based Platforms 175

ATE VECTOR MEMORY

O
m
z
m
x
>
r-

-o

c
X
X
o
cn
m

m
o
x
<
m
x
z
cn

VECTOR FLOW DIRECTION

ATE VECTOR MEMORY

Figure 10- 1. Memory Usage in Automated Test Equipment

Boundary-scan test programs need lop-sided memory consumption.

Rather than a wide and shallow memory they need it narrow and deep. The

three input pins of the TAP controller (TCK, TMS, TDI) consume most of

the ATE memory. Since boundary-scan and configuration operations

involve serially shifting large amounts of data, it is not unusual for the TDI

memory requirement to be millions of bits deep.

This means that when using ATE for boundary-scan tests, you may need

extra memory or added special hardware. When doing in-system

configuration on ATE, the memory needs are even more significant since

configuration sequences are usually substantially longer than boundary-scan

tests. If you have several devices to configure, the memory needed may be

prohibitively large. It is true that for a test or configuration program to work
the entire sequence does not need to be resident in pin memory always.

ATE allows storage of portions of sequences on disk for retrieval when
needed. I his caching approach becomes impracticable quickly if you must

perform many disk retrievals. Disk accesses take a long time and can

increase the overall ATE program execution time.

To overcome the pin memory limits, some ATE systems have integrated

specialized Boundary-Scan Controller hardware. This hardware efficiently

176 The In-System Configuration Handbook

exercises the 1 AP pins delivering the long serial streams of shift data needed
to perform the boundary scan operations. This usually results in higher

speed shift operations and better memory management.

AT E can offer rapid execution times while integrating in-system

configuration and test programs when the pin memory issues are resolved.

Similar to PC based boundary-scan applications; ATE can configure PLDs
from multiple manufacturers. Some vendors provide PLD configuration

applications as add-ons, available at extra cost.

Obviously, manufacturing environments are the primary hosts of ATE
solutions. They can offer seamless integration of in-system configuration

and test and provide this support without added fixturing. ATE also

provides better access to other board pins. You may need to drive some

board pins during test or in-system configuration to ensure success. This

might include driving pins to disable active devices or clocks, to float bus

signals or set certain control signals or state machines to safe states. An
application that provides access only to the TAP will not be able to drive

more pins. Owing to ATE cost and size, it is unsuitable for use in

prototyping or in the field.

4. Field Application Tools

There are two possible approaches for performing in-system

configuration in the field:

1 . Direct TAP Access Method

2. Embedded In-system Configuration Processor Method

Performing in-system configuration in the field does not demand the

throughput speed that the manufacturing environment does, so the use of the

TAP port running at less than maximum speed is acceptable.

However, system security must not be compromised. You must ensure

unauthorized people cannot tamper with the system. You do not want to

either lose the system’s intellectual property or have its function altered or

removed. You can provide this security either physically or

programmatically. Physical security techniques involve making the TAP

access difficult. This might include needing the system to be powered down

and dismantled, or having jumpers that need to be removed with special

tools before accessing the TAP. Programmatic security includes such well-

In-System Configuration-Based Platforms 177

known techniques as password protection, security keys or biometric

interfaces.

The update technique must be foolproof. You need a mechanism to

make sure the correct data is programmed in to each device and in the

correct sequence. This may simply need a more sophisticated update

application that can verify the update sequence was completed correctly

before allowing the system to return to operation.

4.1 Direct TAP Access Methods

If you have access to a laptop PC and your system provides easy access

to the TAP, then you have two choices. First, you could use the

manufacturer-supplied application and download cable to connect to the

system in the field. If you use many different manufacturers' devices in

your system this becomes difficult to manage. Second, you could use a PC-

based boundary-scan tool. This can more easily manage multiple

manufacturer situations. The drawback remains the use of the laptop and its

associated cable. In addition, it may not be desirable to have the TAP port

easily accessible for security reasons.

4.2 Embedded In-System Configuration Processor

Methods

The usual technique to provide field accessibility is to design a tethered

configuration controller into your system. This means that you must embed
the configuration data and algorithm into your system. As described earlier,

the use of IEEE STD 1532 data and algorithm files provides an excellent

approach for realizing this. Either the configuration data or the algorithm

can be independently accessed for update or modification. You are free to

select a configuration data compression algorithm suitable for your
environment and data (should one need it). In addition, all devices are

supported directly without needed extra translation steps.

Xilinx provides a free IEEE STD 1532 configuration environment called

JDrive (available for download from the Xilinx web site -

httn://ww w.xil inx.com). Source code is provided that can be used to read

and execute all conforming IEEE STD 1532 BSDL and ISC data files

regardless of the source. This application is suitable for embedding into

microcontrollers. Since source code is provided, developers can adapt and
improve as needed in their target system.

178 The In-System Configuration Handbook

Other approaches exist but are less satisfactory. Developing customized
solutions based on proprietary approaches and data representations are

possible. The drawbacks of such approaches are obvious. A continued

effort is needed to maintain the solution and improve it to support new or

added manufacturer devices. There may also be logistical difficulties related

to coordinating and updating data. A key question directed at this approach

is, “why reinvent the wheel?”

You might consider translation-based solutions like SVF or STAPL.
Either approach is embeddable. Source code for a STAPL interpreter is

available from the Altera web site

(https://www.altera.com/support/software/download/programming/jam/jam-

index.jsp). There are, as previously noted, certain weaknesses of STAPL.
These weaknesses make it less suitable for general field applications. These

include, the hard-coded compression algorithm, the large run-time memory
need and weak separation of configuration data and algorithm.

There are no publicly available interpreters for SVF although

construction of one is straightforward. SVF, in turn, has significant failings.

The key issues, as previously described, are twofold. The file size is large

since it represents binary data as ACSII hex characters. The configuration

data and algorithm are tightly interwoven in the file.

A quick review of Chapter 4 will remind you of the details of each

approach.

Chapter 1

1

DESIGNING IN-SYSTEM CONFIGURABLE
APPLICATIONS

1. The Spectrum of Configurability

Each configurable system has an intended frequency of configuration.

Some configurable systems are configurable only once - at manufacturing

time. Others incorporate configurability as an essential system function and

must be run-time configurable. The following categories define the

spectrum of configurability.

Simple configuration may be the most recognizable configurable

application. Technicians populated a printed circuit board with

programmable devices. Part of the board test procedure includes

programming the PLD’s configuration memory with logic patterns. The

system configuration is never again changed.

Field reconfiguration is not time dependent, but is the most pervasive

application. It can provide a technique for updates, bug fixes, and adding

new features to digital hardware.

Periodic reconfiguration is for those applications where there is a regular

change of supporting data, such as environmental recording systems, global

positioning systems, and so on.

Frequent reconfiguration speeds up data processing for applications such

as image processing.

Runtime reconfiguration applications rely on changing working

environment conditions. As these conditions change, so must the application

function. Examples of this are detecting network protocols in a mobile

application or interrupting a task with new service triggered by a security or

safety sensor.

Designing In-System Configurable Applications 181

Some variations within this spectrum include partial reconfiguration and

on-the-fly reconfiguration. These two variations can exist within the

spectrum as a subclass of any of the described categories. They may also

exist as a separate application class within the spectrum.

Partial reconfiguration allows reconfiguration of only a portion of the

programmable device. This allows development of systems that can remain

mostly operational during reconfiguration. Reconfiguration disables only

the portion reconfigured. When used correctly, partial reconfiguration

allows phased-in reconfiguration of features and tasks with limited impact

on system utility.

On-the-fly reconfiguration is typically available only in nonvolatile

devices. It allows programming of the static configuration memory of a

device with an alternate utility. Activation of the alternate utility does not

immediately occur. Activation occurs when a designer-specified trigger

condition occurs. This allows development of systems that can preconfigure

while running without disturbing the run-time behavior. When enabled, the

alternate system utility activates with almost no down time. The total down
time is equal to the time it takes to load the static configuration memory into

the active memory (typically 100 microseconds).

2. Designing for Simple Configurability

What does a simple configurable system look like? The real problem is

how to design a configurable system. In speaking of configurable, we mean
configurable once at development or manufacturing time only. There are

several basic rules of thumb associated with the successful design of
configurable systems.

1 . Design in configuration port accessibility.

You need access to the port. If you can't, you obviously won't be
able to configure your system even once. I his also includes making
certain that any port enable signals are correctly activated. In

addition, if some devices support TRST and others don’t, you must
ensure that the stray TRST signals are appropriately controlled
during configuration to prevent stray TAP transitions.

2. Design the configuration port interconnect network to function at

the needed speeds.

182 The In-System Configuration Handbook

Don’t skimp on common sense design practices even if port use is

limited. It relays the information that describes the system

functionality. You want it to work and work reliably.

3. Make sure VCC is within the range pointed out in the device data

sheet.

Configurable devices have a fully specified operating range.

Reliable operation is only guaranteed within that range.

4. Ensure that VCC is stable during device programming if you are

using concurrent configuration strategies.

An adequate power supply is essential for reliable system

configuration. Concurrent approaches mean that all devices are

erasing and programming simultaneously. Make certain that you

system power supply can handle the power needs of the devices

during configuration.

5. If you are using long chains of devices with widely distributed

TCK and TMS signals, consider building TMS or TCK clock

trees as previously discussed.

Attention to design and distribution of these signals is important.

Noise induced stray TCK pulses can force a device TAP controller

state machine into a different state than all other devices effectively

breaking the chain. Therefore, this electrical issue will look like a

physical interconnect problem. Debugging and diagnosing these

issues can be time consuming.

6. Provide a means to suspend all free running clocks and

oscillators during configuration.

System clock signals left running during configuration can be a

source of significant electrical noise. You may see coupling of the

clock signals to the TAP signal. You may also see a more indirect

effect. The clock could be driving some circuitry that drives some

state machines that cause signal transitions that couple noise to the

TAP signals. This is another time-consuming and tedious problem to

track down. It may also be difficult to repair after board fabrication.

7. Make certain to run board tests before or after device

configuration - not during configuration.

Designing In-System Configurable Applications 183

This circumstance is similar to having free running clocks during

configuration. It could be many times worse, though. During test,

many signals are activated. The failure noted could be transient or

occur at different times depending on the coordination of the

configuration and test programs.

8. Provide a means to hold the system in a fixed state during

configuration to make it as quiet as possible. This might include

providing some system reset signals as well as the previously

mentioned free running clock and oscillator controls.

Some devices may respond to initial states produced on

programmable device output after configuration completes. For

instance, a chip enable signal may be activated. Proper gating of

these signals should ensure that no false system operations are started

until the system is fully configured or until it is safe to do so.

9. When using IEEE STD 1 1 49. 1 or IEEE STD 1 532 device chains,

group devices with similar logic characteristics together (for

example, 3.3Vand 2.5V devices). This reduces the need for

special circuitry.

Mixed voltage environments are common. When using devices with

mixed 10 voltages, you need to do one of the following:

• Provide level shifters between differently powered IOs
• Check that connected devices have IO voltage tolerances suitable

for the devices to which they are coupled.

• Connect devices in chains of identical 10 voltage levels with

level shifter between them.

This last technique is the safest and most reliable.

10. When using IEEE STD 11 49.1 /IEEE STD 1532 devices, ensure

that any compliance enable signals or the TRST TAP signal and
easily accessible and controlled by the programming application.

Some devices need special signaling to force them into IEEE STD
1 532 (or IEEE SID 11 49. 1 mode). Access to the pins that enable the
TAP is essential to correct device configuration.

Ihe rules related to accessibility of the programming port are relevant only
to the development and manufacturing phases. The assumption is that when
the final product arrives at the end user site, this access is no longer needed
since there will be no further configuration.

184 The In-System Configuration Handbook

There is a separate question about whether this approach is wise. In

particular, part of the power of configurable devices is that they allow
designers to make changes quickly and potentially late in development or

even out in the field. This choice is never available to systems based on
ASICs.

If you design a system to be configurable but not ^configurable then you
lose the advantage of applying late breaking fixes at any point in the

product’s lifetime. You save the cost associated with designing an accessible

configuration port but pay the price of increasing the cost for system repair

or upgrade.

A block diagram in Figure 11-1 shows a simply configurable system. Note

that the configuration port is not accessible after the system is placed in its

enclosure. The system can only be practically configured during

manufacturing when the board is fully exposed. It may also be the case that

there are no posts or connector outlets and that the configuration post is

accessible only using a special fixture to contact the port pins.

Designing In-System Configurable Applications 185

Figure 11-1. Configurable System Block Diagram

3. Designing for Field Reconfigurability

Basic reconfigurability allows for the possibility of reconfiguring a

system at any point in its lifetime. A reconfigurable system needs to adhere
to all the rules associated with a configurable system. As well, the

configuration port must be accessible even after product ship.

Ihis approach is a step up from simple configurability and gives access to

the flexibility of programmable logic any time during the system’s life cycle.
It is worth noting, however, there is a presumption that someone physically
present at the target system will perform system updates. There is also the
presumption the configuration port is readily accessible by that person. You
must knowingly design your systems to allow this access.

186 The In-System Configuration Handbook

Figure 11-2 provides a block diagram of a field reconfigurable system. In

this case, the configuration port is placed on the card edge for accessibility

after the system is placed in its enclosure.

Figure 11-2. Reconfigurable System Block Diagram

3.1 Designing for Network Reconfigurability

The network reconfigurable system builds on the field reconfigurable one

by incorporating a method to allow control by a network link. Once a

network becomes involved, the overall reliability of the communications

method becomes an issue. This means that you must add extra circuitry to

ensure that new configuration data received is accurate, complete and usable

before allowing the system to use it.

You must always have a default (known working) design available and

selectable. There should be a fail-safe method that ensures the system will

always come up with a known working function. This need not represent the

most up-to-date or most complete functionality. Basic utility is enough to

debug, diagnose and resolve any issues. This circuitry should not need

operator intervention to function. This is important if the system loses

Designing In-System Configurable Applications 187

power, even momentarily, during update. When power is restored and the

operator reconnects to the system, the system should always power-up in a

usable state with working communications and at least basic system

function.

For high reliability operations, there should be a system watchdog

function. This is a monitoring application to test system status periodically.

If the system is failing, the watchdog should try to alert a repair center

sending a message if possible or even lighting a status LED for the service

personnel to see. The watchdog may also try to halt the system safely to

avoid lasting functional issues and to bring attention to the failure.

In normal execution, operators should be able to set new default designs

after a successful system update. This means the system should always have

a known-good, fail-safe configuration.

Figure / 1-3. Network Reconfigurable System Block Diagram

figure 1 1-3 depicts a block diagram of a network reconfigurable system.
More functionality is needed of the system that may increase the overall cost

188 The In-System Configuration Handbook

and consume more board space. It is possible to reuse functionality of parts

already on the board. For instance, an already included processor and
network interface may be used for configuration tasks as well as other

mission tasks.

It may be possible to use only one configuration store (rather than the

two depicted). An always-correct back-up store remains on board but

updates are transferred by the network and not stored locally. This means
that when the system reverts to the back-up store (after a power glitch, for

instance), a remote operator must intervene to update the system to the latest

revision.

The configuration processor controls the flow of configuration data. It

can access the programmable devices directly. It also accesses either of the

configuration stores and controls which store serves as the configuration data

source.

4. Designing For Periodic Reconfigurability

Periodic reconfigurability typically builds on field reconfigurability and

allows the system ready access to changing data. The system polls a source

location for updates. This source could be removable media, a local disk

drive or data stored across a network. Data updates may occur during system

operation. Alternatively, before any operation, the system can first poll for

updates and then store them locally. Since the configuration changes only

now and then, the system will likely use the same functionality for an

extended period before changing.

This may be characteristic of systems released to the field for alpha or

beta testing and incorporating field update for improvements and fixes.

5. Designing For Frequent Reconfigurability

Often reconfigurable systems change functionality with every invocation.

Systems of this sort might change their task not only immediately before

beginning execution but also immediately after invocation or completion.

They are similar to periodically reconfigurable systems except that these

systems may change their functionality from invocation to invocation.

Designing In-System Configurable Applications 189

An example of this system may be a communications switch handler that

needs to respond to incoming and outgoing traffic with different protocols.

Device size limits may require that different protocols be set up as different

configuration images. The system might work in the following manner.

Initially configured to accept data using protocol A, the device stores the

received data in on-chip or off-chip RAM. The data needs to be relayed

using protocol B. The device is reconfigured with the image that supports

protocol B, reads the data out of the RAM, and sends it out. The device then

reconfigures itself to accept protocol A and waits for the next data packet.

This can be abstracted to support any number of different protocols, each

one with an associated configuration image.

The configuration images could be stored either, on board in a large

memory or even at a remote site and accessed by a network connection.

This latter approach is more complicated and may be less reliable since the

network connection becomes the weakest link.

6. Designing for Runtime Reconfigurability

A run time reconfigurable system changes its task over the course of
carrying out the system function. An example of this is an application that

changes during its execution to complete the needed function. These
systems must minimize overall system downtime during reconfiguration.

I his issue then is to design systems that are able to reconfigure quickly.

There are many approaches to reach this goal.

6.1 Designing for Rapid Reconfigurability

Rapid reconfigurability focuses on minimizing system down time during
reconfiguration. The reconfiguration is a context switch. The system,
initially running in one mode or on one task switches to perform a new task.

There are several limits to keep in mind. One is the maximum acceptable
latency time. That is the maximum time during which the system can be
doing nothing while the device is accepting a new configuration. Another is

maximum context switching frequency. This signals how often a new
configuration is needed. In the worst case, these two values are equal. For
example, you must deliver new functionality every 3 minutes and the system
can tolerate doing nothing for only 200 msec. For this system to work, the
maximum acceptable latency time must be less than the inverse of the
maximum context switching frequency. In other words, there must be

190 The In-System Configuration Handbook

enough time to get its configuration data loaded activated before sending the
next load of configuration data.

When considering devices for these applications you must understand if

they remain active during configuration or not and if so what are they
actively doing? A device compliant with IEEE STD 1532 needs to have all

programmable pins adhere to the HIGHZ and CLAMP behavior rule of the

standard. However, if all the device pins are fixed system pins, they do not

follow that rule. That means these pins may be doing something during
configuration. It is important for you, the system designer, to understand

what they are doing. It had better be something predictable and controllable.

When the context switch occurs, you do not want to damage the system.

This means the designer must take special care to ensure that context switch

is a system-safe operation.

Context switches must therefore occur only when the system is in a

known safe state. One method for this is pin state (or pin state sequence)

monitoring. This discovers when the system reaches a safe state by
following the system pin states. Comparing the pin states (or pin state

sequences) against known values (or value sequences) signals a safe state.

Then, either the system automatically performs the context switch or it alerts

the operator on reaching the safe state. The operator can then perform a

context switch under her control.

There could be complications when several devices need to switch as a

group. Specific complications could include a requirement of sequencing

the context switches of the devices to ensure safety of system operation with

each step. Once again, special circuitry can play a role here or the operator

can execute instructions to complete the sequence manually.

With these rules in mind, we will consider several approaches to process

the configuration data.

The first approach is merely to get the configuration bits into the device

as quickly as possible. An example of this is running the IEEE STD 1532 or

other serial bit interface at the maximum speed. The drawback of the serial

approach is that one bit at a time is loaded. Each clock cycle therefore feeds

only one significant bit to the device at a time. In addition, in a serially

connected chain of devices the device with the lowest maximum

configuration speed controls the system maximum configuration speed. This

means that if a single device has a maximum speed of 1 MHz and all other

device have a speed of 50MHz the system can configure only at 1 MHz.

Designing In-System Configurable Applications 191

These drawbacks can be overcome by putting all like-speeded devices in

a single independent chain or even by having each device have its own
independent configuration port. While this might decrease the overall

system configuration time (and therefore the system down time) it increases

the system cost by needing a multiplicity of configuration ports and

potentially a more complicated configuration controller to manage system

configuration.

Another approach would be to use a byte wide or word wide

configuration port (if available on the device). These ports typically deliver

8 (or sometimes 16 or 32) bits of configuration data at a clock rate similar to

that of the serial mode, increasing throughput by 8 (or 16 or 32). These

interfaces are typically point-to-point. An example of this methodology is

included as Figure 1 1-4. This simplified block diagram includes a network

interface to receive the configuration data from a remote location. This is

optional functionality. The heart of the system is the configuration processor

that selects the target programmable device. Typically a single device can

be configured at a time. However, if the configuration data is identical for

all devices then all may be configured simultaneously.

192 The In-System Configuration Handbook

Figure 1 1-4. Rapid Reconfigurable System Block Diagram -Parallel

Yet another approach would be to apply a partial reconfiguration method

to reconfigure the system incrementally canceling system downtime in

localized areas of functionality. This would involve a phased and controlled

shutdown and startup of the system. Of course, not all devices support

partial configuration so this technique would be device specific.

A final consideration would be the use of on-the-fly techniques. That

reduces the system down time to the device activation time. It may in fact

be the case the configuration time doesn’t matter when using on-the-fly

reconfiguration since the down time is so small, you can transfer

configuration data while the system is running. You should be certain the

context switching time does not exceed the time it takes to configure the

device in the background before the switch.

There is a variation of on-the-fly reconfigurability for volatile devices.

We will use Xilinx’s Virtex2PRO family of FPGAs to provide an example.

The Virtex2PRO devices have an integrated PowerPC (PPC) processor and a

Designing In-System Configurable Applications 193

special port internal to the device called the Internal Configuration Access

Port (ICAP). The ICAP allows access to the device’s configuration

memory. You can use the PPC to read and write the configuration memory

and effect small changes to the device function, quickly.

For instance, if you need to change the device 10 characteristics from

LVDS to LVPECL, the configuration patterns to perform this are small and

easily stored in on or off-chip memory. The PPC can read and apply this

configuration information and rapidly change the 10 characteristics. This

does not happen instantaneously like on-the-fly mode in nonvolatile devices

but it does happen quickly.

7. Summary

Reconfigurable systems occupy a wide range. Designers need to consider

reconfiguration early in the design process to ensure efficient and

manageable implementation. Before choosing a reconfiguration strategy,

designers need to be aware of the reconfiguration needs of their system.

Chapter 12

Conclusion

Programmable logic enabled developing a new class of systems that in

themselves are programmable. With the approval and acceptance of IEEE

STD 1532, device vendors essentially agreed the configuration algorithm

itself is not protected intellectual property. The value of the device was its

logic functionality and its ability to be used easily within a system.

IEEE STD 1532 strengthens this latter feature. IEEE STD 1532 relegates

developing customized configuration applications to the dustbin and allows

configuration to be more easily included as general-purpose system

functionality. However, it does not free the designer from designing the

configuration infrastructure.

The rules are simple. First, decide on the class of configurable system

you are designing. Where is your application on the spectrum of

configurability? Then, when you have resolved that issue, ensure that you

design in the programmable and support components needed to carry out the

functionality chosen. This includes ensuring that and additional components

to control configuration are identified and incorporated, as well as designing

or assembling the software required. Finally, you must create the

configuration port network. It is essential that it, too, be designed - and not

simply allowed to happen.

This latter point cannot be over-emphasized. Too many systems, even

simple ones, either consistently or sporadically fail configuration because of

bad configuration network design. Therefore, Chapter 1 1 is the most

important chapter in the book.

I his book was designed to be both useful and practical in nature and
serve as a reference for developing in-system configurable systems of the

present and the future. I hope it has achieved these goals.

References

"A Quick JTAG ISP Checklist." Xilinx, Inc. June 7, 2002.

"Accelerator Series FPGAs - ACT 3 Family." Actel, Inc. September, 1997.

"ACT 1 Series FPGAs." Actel, Inc. April, 1996

"ACT 2 Family FPGAs." Actel, Inc. December, 2000.

"APEX II Programmable Logic Device Family Data Sheet", Altera, Inc.

August, 2002.

"CoolRunner II CPLD Family." Xilinx, Inc. March 12, 2003.

"CoolRunner XPLA3 CPLD Family." Xilinx, Inc. June 23, 2003.

"FLEX 8000 Programmable Logic Device Family Data Sheet.", Altera, Inc. June, 2003.

“Introduction to JTAG and Five-Volt Programming with In-circuit Programmable MACH
Devices.” Advanced Micro Devices, February, 1996.

"ispMACH 4A Family Architectural Description." Lattice Semiconductor Corporation. June,

2000 .

"ispMACH 5000B Family Data Sheet." Lattice Semiconductor Corporation. September,

2002.

“ispVM EMBEDDED Software.” Lattice Semiconductor Corporation, December, 2001.

“ispVM System Software.” Lattice Semiconductor Corporation, December, 2001.

196

“Frequently Asked Questions (FAQ) About Programmable Logic.” The Programmable Logic

Jump Station. OptiMagic, Inc. Retrieved June 20, 2003 <www.optimagic.com/faq.html>

"MAX 7000 Programmable Logic Device Family Data Sheet.", Altera, Inc. June, 2003.

"MAX 9000 Programmable Logic Device Family Data Sheet.", Altera, Inc. June, 2003.

"Quicklogic ESP and FPGA Data Book." Quicklogic, Inc. December, 2000.

"Stratix Device Handbook." Volumes 1-3, Altera, Inc. July, 2003.

"Virtex 2.5V FPGA Complete Data Sheet." Xilinx, Inc. December 9, 2002.

"VirtexE 1.8V FPGA Complete Data Sheet." Xilinx, Inc. March 14, 2003.

"XC4000XLA FPGAs Description." Xilinx, Inc. October 18, 1999.

"XC5200 FPGAs." Xilinx, Inc. November 5, 1998.

"XC9500 5V In-System Programmable CPLD Family." Xilinx, Inc. September 15, 1999.

"XC9500XL 3.3V High Performance CPLD Family." Xilinx, Inc. January 24, 2002.

“Xilinx In-System Programming Using an Embedded Microcontroller.” Xilinx, Inc. January

15,2001.

“IEEE STD 1 149.1-2001: IEEE Standard Test Access Port and Boundary-Scan Architecture”.

New York, NY: The Institute of Electrical and Electronics Engineers, 2001.

“IEEE STD 1532-2002: IEEE Standard for In-System Configuration of Programmable

Devices”. New York, NY: The Institute of Electrical and Electronics Engineers, 2003.

“Virtex II Complete Data Sheet.” Xilinx, Inc. June 19, 2003.

“Virtex II Pro Complete Data Sheet.” Xilinx, Inc. June 19, 2003.

ispLSI 3256 Data Sheet." Lattice Semiconductor Corporation. June, 1999.

Bleekcr, Harry, Peter van den Eijnden, Frans de Jong. “Boundary-Scan Test”. Dordrecht, ITe
Netherlands: Kluwer Academic Publishers, 1993.

Brown, Stephen and Jonathan Rose. “Architecture of FPGAs and CPLDs: A Tutorial”. IEEE
Design and Test ofComputers ,

Vol. 13, No. 2, pp. 42-57, 1996.

Campione, Mary, Kathy Walrath, Alison Huml. "The Java Tutorial: A Short Course
on the Basics". 3

rd
Edition, Addison-Wesley Publishers, 2000.

Cappalctti, Paulo, C aria Golla, Piero Olivo, Enrico Zanoni. "Flash Memories".
Kluwer Academic Publishers, 1999.

197

Chen, Zhiqun. "Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide". Addison-Wesley Publishers, 2000.

Coombs, Clyde F. "Coombs’ Printed Circuit Handbook". 5th Edition, McGraw Hill
Professional, 2001.

Dorf, Richard C., Editor. "The Electrical Engineering Handbook". 2
nd

Edition, CRC Press

1997.

Fink, Donald G., Wayne Beaty, Editors. "Standard Handbook for Electronic Engineers". 14
th

Edition, McGraw Hill Professional, 1999.

Ganssie, Jack. “The Art of Designing Embedded Systems”. Wobum, MA: Newnes Press,

2000 .

Jenkins, Jesse H. “Designing with FPGAs and CPLDs”. Prentice Hall, 1994.

Lipman, Jim. "Growing Your Own Clock Tree". EDN, March 14, 1997.

Parker, Kenneth P. "The Boundary-Scan Handbook". Second Edition. Norwell, MA: Kluwer

Academic Publishers, 2000.

Sharma, Ashok. "Advanced Semiconductor Memories: Architectures, Designs and

Applications". Wiley IEEE Press, 2002.

Sharma, Ashok. "Programmable Logic Handbook: PLDs, CPLDs and FPGAs". McGraw Hill

Professional, 1998.

Trimberger, Steve, Editor., “Field Programmable Gate Array Technology”. Norwell, MA:
Kluwer Academic Publishers, 1994.

198

Index

Actel 28, 29, 30,33, 196

Altera 19, 20, 22, 30, 3 1 , 39, 59, 64, 1 35,

178, 196, 197

Antifuse 33

Application Specific Integrated Circuits

14, 15

ASIC 14, 15, 23

ASSET InterTech 54

ATE5, 70, 134, 135, 136, 169, 174, 175,

176

Automatic Board Test Equipment Tools

174

automatic test equipment5, 57, 63, 77,

162, 169

Bi-configurable 161

Boundary Scan register 1 1

boundary-scan5, 12, 13, 54, 56, 57, 58,

63, 65, 66, 70, 71, 72, 74, 75, 78, 79,

82,96, 100, 102, 114, 120, 121, 127,

134, 135, 138, 139, 155, 160, 162,

171, 173, 174, 175, 176, 177

Boundary-Scan Description Languagel2,

101

BSDL12, 84, 85, 88, 90, 93, 100, 101,

102, 106, 109, 115, 116, 117, 118,

119, 121, 125, 127, 131, 132, 133,

134, 136, 139, 141, 142, 144, 146,

149, 150, 171, 173, 177

Bypass register

C field

Capture DR....

Capture IR

CLB

11

51

8
,
11

8
,
10

24, 25, 26, 27, 28, 29

Complex Programmable Logic Devices 15

Concurrency 128, 129, 148

Configurable Logic Blocks 24

Configuration access Ports 41

Configuration Process Validation 1 48,

154

Configuration Speed 148, 151

CPLD2, 15, 16, 17, 18, 19, 20, 22, 196,

197

Data Compression 77

data register8, 9, 1 1, 55, 88, 89, 90, 94,

96, 120, 145

Data Retention 148, 152

Direct TAP Access Methods 1 77

EEPROM....19, 20, 33, 35, 36, 37, 38, 39

Embedded In-System Configuration

Processor Methods 177

Endurance 33, 148, 152

Execute 4

Exitl DR 8, 1

1

Exltl IR 8, 10

Exit2 DR 8

Exit2 IR 9

Field Application Tools 176

Field Programmable Gate Arrays 1 ,
1 5, 23

Field reconfiguration 180

Field upgradeable 1 6

1

Field Upgradeable 162, 163

Flash 33,37,38, 197

FLEX 8000 30, 196

floating gate 35, 36, 37, 38

FPGA
1 ,

1 5, 23, 24, 26, 28, 29, 30, 3
1

, 32,

33,39, 40, 42, 197

FPGA architecture 23, 24

Frequent reconfiguration 180

Functionally reconfigurable 161

IDCODE62, 63, 79, 84, 85, 87, 88, 102,

103, 115, 118, 119, 120, 123, 124

Idle4, 55, 56, 76, 85, 89, 90, 91 , 92, 93,

111, 112, 113, 141, 142, 143, 145

IEEE STD 1149.15,6, 10, 11, 12, 13,47,

48,62, 72, 75, 100, 102, 103, 116,

I 19, 134, 138, 140, 141, 149, 155,

160, 162, 165, 197

199

IEEE STD 1532xvii, xviii, 45, 46, 47, 49,

75, 100, 101, 102, 106, 111, 116, 119,

122, 127, 134, 135, 136, 138, 139,

140, 141, 144, 145, 147, 148, 149,

154, 160, 171, 172, 173, 177, 190,

194, 197

IEEE STD 1532 Compatible 149

In System Programming 3

Initialization 82, 148

instruction register8, 9, 54, 55, 79, 84,

118, 127, 139

ISC_Action 109, 1 15

ISC_Blank_Usercode 1 06

ISC_Design_Waming 116

ISC_Fixed_System_Pins 104, 105

ISC_Flow 109, 110, 114

ISC Illegal Exit 1 16

ISC_Pin_Behavior 103, 105

ISC_Procedure 109, 114, 115

ISC_Security 107, 109

ISC_Status 106

ispVM 172, 196

JAM 59

JAPIBS 70,71,97

Java66, 67, 68, 69, 70, 71, 72, 77, 78, 79,

84, 91, 97, 98, 134, 135, 172, 197, 198

Java API for Boundary-Scan66, 70, 71,

72, 77, 97, 134, 135

Java Card 70, 71, 97

Java Virtual Machine 97

javaScanBitlf. 72, 73, 74, 76, 77

javaScanHWIf 72,74, 77

javaScanOperations 72, 75, 77

javaScanState 72, 73

JDrive 1 77

JEDEC49, 50, 51, 52, 57, 59, 63, 65, 134,

135, 136, 154

JEDEC Standard JESD3-C 49

JESD71 59

JETAG 5

JTAG 5, 100

JVM 97

L field 50

Lattice3, 4, 1 8, 20, 2
1

, 22, 39, 59, 1 72,

196, 197

Lattice Semiconductor 3,39, 196, 197

Load 4, 12

Manufacturing 169

Medley Reconfigurability 161

MODE 3,4, 118

non deterministic 58

Nonvolatilel 8, 32, 33, 4
1

, 42, 43, 1 52,

153

nonvolatile devices 2, 151, 181, 193

on-the-fly reconfiguration 181, 192

PAL 1, 15,20

Parallel Access 42, 44

partial reconfiguration 181, 192

Pause DR 8

Pause IR 8

PC-based Boundary-Scan Tools 1 73

Periodic reconfiguration 180

PLA 1

PLD1, 15, 19, 48,50, 63, 170, 171, 176,

180

PLD Manufacturer Tools 170

Power consumption during configuration

148, 150

Production Configuration 161, 162

Programmable Logic Arrays 1

Programmable Logic Device49, 196, 197

Programmable Logic Devices.... 1, 15, 19

Programmed Array Logic 1

PROM 2, 32, 40, 42, 50,51

proprietary2, 4, 12, 42, 45, 46, 58, 64, 66,

77, 78, 106, 107, 126, 135, 144, 150,

154, 160, 178

Prototype 1 68

Prototyping Configuration 161

Reliability 148, 153

Run Test/Idle8, 10, 1 1, 12, 1 10, 1 1 1,

112, 113, 150

RUNTEST 54, 56

Runtime reconfiguration 180

SCLK
SDI

SDO
SDR
Security

Select DR Scan

Select IR Scan

Serial Access

Serial Vector Format

Shift DR
Shift IR

3,4

3,4

3,4

54, 55, 56, 57, 60

108, 148, 153

8 , 10
,
11

8 ,
10

45,46, 47

54

8 ,
11

8, 9, 10

Simple configuration 180

Simple Programmable Logic Devices.. 15

SIR 54, 55,57, 60

200

Spectrum of Configurability 1 80

SPLD 15, 16, 17

SPROM 2,45

SRAM2, 24, 25, 26, 27, 29, 30, 33, 39,

40,41,43,45

standard5, 6, 8, 12, 33, 34, 37, 40, 42, 45,

49, 51, 59, 60, 61, 62, 63, 64, 65, 66,

71.73, 77, 78, 101, 102, 104, 106,

107, 108, 114, 115, 117, 119, 121,

123, 134, 135, 136, 139, 144, 145,

146, 149, 150, 171, 173, 190

STAPL59, 60, 61 , 62, 63, 64, 65, 66, 70,

72, 97, 98, 134, 135, 136, 171, 178

status46, 63, 85, 89, 90, 91, 92, 93, 94,

95, 100, 106, 107, 121, 125, 136, 145,

146, 171, 187

successful design of configurable systems

181

SVF54, 57, 58, 59, 60, 63, 65, 70, 72, 97,

98, 134, 135, 136, 154, 171, 178

System Boot Time 148, 153

TAP5, 6, 7, 8, 12, 47, 55, 56, 57, 62, 72,

73.74, 75,76, 77, 80, 84, 85, 89,91,

92, 101, 117, 118, 127, 150, 155, 156,

160, 162, 172, 173, 175, 176, 177,

181, 182, 183

TCK5, 6, 8, 56, 57, 63, 75, 76, 1 10, 1 1 1,

112, 113, 117, 118, 122, 123, 124,

125, 127, 129, 130, 131, 151, 155,

156, 160, 175, 182

TDI6, 8, 11,55, 56, 75,76, 117, 118,

155, 160, 175

TD06, 8, 11,55, 56, 75, 110, 113, 117,

118, 155

test access port 47, 66

Test Logic Reset 8, 62

TMS6, 8, 75, 117, 118, 127, 155, 156,

160, 175, 182

TRST 6, 57, 75, 155, 183

Update DR 8, 1

1

Update IR 8, 9, 10

USERCODE102, 103, 106, 115, 118,

119, 120, 122, 124, 125

V field 51

Virtex 28,31, 197

Virtex2 28

Volatile 32,39,41

XC4000 24, 26, 28

Xilinxl 8, 22, 24, 25, 26, 27, 28, 29, 30,

31,39, 45,59, 70, 100, 171, 177, 192,

196, 197

XSVF 171

201

The In-System Configuration Handbook:
A Designer's Guide to ISC

Programmable logic radically changed the electronic system design
landscape. It reduced board space needed for random logic, state
machines and system interfaces. It allowed faster design cycles, made
easy late term bug fixes and gave designers greater freedom to
experiment and prototype.

In-system programming of these devices has had a similar
revolutionary effect. The ability to change the programmed content of
programmable logic while it is on the board is equivalent to being able
to redesign all the hardware—without changing a single component.
This allows the possibility of providing field upgrades of your product to
fix problems or to introduce new functionality. It allows designing in

reconfiguration as an essential function of your system with different

capabilities swapped in as needed during run-time. Further it allows
storage of different product profiles for retrieval as necessary to allow
just-in-time configuration of systems to meet market needs.

Recent developments in programmable logic have helped to make
reconfigurable systems more streamlined. The most significant

development, however, was the introduction, approval and
popularization of IEEE STD 1532, the IEEE Standard for In-System
Configuration of Programmable Devices. While focusing on IEEE STD
1532, this book surveys all of the available techniques and products that

ease the development of in-system configurable applications. In

addition. The In-System Configuration Handbook: A Designer's Guide
to ISC provides design considerations and rules-of-thumb to ensure

that the functionality you want will work.

The purpose of this text is to bring together, in a single volume, the

information needed by systems designers to develop applications that

include configurability. This covers the entire range of systems from

the simplest implementations that merely include configurable logic to

realize system functions to the most complicated that include

reconfigurability as part of the application itself.

This book is written for 1C Designers, System Designers and Test

Engineers.

Kluwer Academic Publishers

1-4020-7655-X

